|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
datasets: |
|
- HuggingFaceTB/smoltalk |
|
- HuggingFaceH4/ultrafeedback_binarized |
|
base_model: |
|
- SmallDoge/Doge-20M |
|
language: |
|
- en |
|
pipeline_tag: question-answering |
|
--- |
|
|
|
|
|
# **Doge 20M Instruct** |
|
|
|
<div align="center"> |
|
<img src="https://huggingface.co/spaces/SmallDoge/README/resolve/main/org_icon.png" width="100%" alt="SmallDoge" /> |
|
</div> |
|
<hr> |
|
<div align="center"> |
|
<a href="https://arxiv.org/abs/2412.11834" target="_blank" style="margin: 2px;"> |
|
<img alt="arXiv" src="https://img.shields.io/static/v1?label=arXiv&message=2412.11834&color=B31B1B&logo=arXiv" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
<a href="https://github.com/SmallDoges/small-doge" target="_blank" style="margin: 2px;"> |
|
<img alt="GitHub" src="https://img.shields.io/badge/GitHub-SmallDoge-181717?logo=github" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
<a href="https://huggingface.co/SmallDoge" target="_blank" style="margin: 2px;"> |
|
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-SmallDoge-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
<a href="https://github.com/SmallDoges/small-doge/blob/main/LICENSE" style="margin: 2px;"> |
|
<img alt="License" src="https://img.shields.io/badge/License-Apache--2.0-blue.svg" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
</div> |
|
|
|
Doge uses Dynamic Mask Attention as sequence transformation and can use Multi-Layer Perceptron or Cross Domain Mixture of Experts as state transformation. Dynamic Mask Attention allows the Transformer to use self-attention during training and state space during inference, and Cross Domain Mixture of Experts can directly inherit the weights of Multi-Layer Perceptron for further training. This model is trained by [SmallDoge](https://huggingface.co/SmallDoge) community, for detailed algorithm and model architecture, please refer to [Wonderful Matrices](https://arxiv.org/abs/2412.11834), all training details and code are publicly available on the [small-doge](https://github.com/SmallDoges/small-doge) repository. |
|
|
|
|
|
## Uses |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, TextStreamer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-20M-Instruct") |
|
model = AutoModelForCausalLM.from_pretrained("SmallDoge/Doge-20M-Instruct", trust_remote_code=True) |
|
|
|
generation_config = GenerationConfig( |
|
max_new_tokens=100, |
|
use_cache=True, |
|
do_sample=True, |
|
temperature=0.8, |
|
top_p=0.9, |
|
repetition_penalty=1.0 |
|
) |
|
steamer = TextStreamer( |
|
tokenizer=tokenizer, |
|
skip_prompt=True |
|
) |
|
|
|
prompt = "Hi, how are you doing today?" |
|
conversation = [ |
|
{"role": "user", "content": prompt} |
|
] |
|
inputs = tokenizer.apply_chat_template( |
|
conversation=conversation, |
|
tokenize=True, |
|
return_tensors="pt", |
|
) |
|
|
|
outputs = model.generate( |
|
inputs, |
|
tokenizer=tokenizer, |
|
generation_config=generation_config, |
|
streamer=steamer |
|
) |
|
``` |
|
|
|
|
|
## Model Details |
|
|
|
We build the Doge-Instruct by first SFT on [SmolTalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk) and then DPO on [UltraFeedback Binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized). |
|
|
|
> TODO: The larger model is under training and will be uploaded soon. |
|
|
|
**SFT**: |
|
| Model | Training Data | Epochs | Content Length | LR | Batch Size | Precision | |
|
|---|---|---|---|---|---|---| |
|
| [Doge-20M-Instruct-SFT](https://huggingface.co/SmallDoge/Doge-20M-Instruct-SFT) | [HuggingFaceTB/smoltalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk) | 2 | 2048 | 8e-4 | 0.25M | bfloat16 | |
|
| [Doge-60M-Instruct-SFT](https://huggingface.co/SmallDoge/Doge-60M-Instruct-SFT) | [HuggingFaceTB/smoltalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk) | 2 | 2048 | 6e-4 | 0.25M | bfloat16 | |
|
|
|
**DPO**: |
|
| Model | Training Data | Epochs | Content Length | LR | Batch Size | Precision | |
|
|---|---|---|---|---|---|---| |
|
| [Doge-20M-Instruct](https://huggingface.co/SmallDoge/Doge-20M-Instruct) | [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized) | 2 | 1024 | 8e-5 | 0.125M | bfloat16 | |
|
| [Doge-60M-Instruct](https://huggingface.co/SmallDoge/Doge-60M-Instruct) | [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized) | 2 | 1024 | 6e-5 | 0.125M | bfloat16 | |
|
|
|
|
|
**Procedure**: |
|
|
|
**SFT**: |
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/loser_cheems/huggingface/runs/eohr6fuj) |
|
|
|
**DPO**: |
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/loser_cheems/huggingface/runs/h6c2p2fe) |
|
|
|
|
|
**Environment**: |
|
- Image: nvcr.io/nvidia/pytorch:24.12-py3 |
|
- Hardware: 1x NVIDIA RTX 4090 |
|
- Software: Transformers, TRL |
|
|
|
|
|
## Citation |
|
|
|
```bibtex |
|
@misc{shi2024wonderfulmatrices, |
|
title={Wonderful Matrices: Combining for a More Efficient and Effective Foundation Model Architecture}, |
|
author={Jingze Shi and Bingheng Wu}, |
|
year={2024}, |
|
eprint={2412.11834}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG}, |
|
url={https://arxiv.org/abs/2412.11834}, |
|
} |
|
``` |