Question Answering
Transformers
Safetensors
English
doge
text-generation
custom_code
File size: 5,442 Bytes
fa13e11
 
0da5581
 
 
33d1292
6767c23
ea6fe65
0da5581
 
 
fa13e11
 
 
0da5581
fa13e11
a43ac04
 
 
 
f522bcd
a43ac04
 
 
a60a49a
f522bcd
 
a43ac04
 
 
a60a49a
a43ac04
 
 
 
a60a49a
fa13e11
 
 
 
0da5581
 
 
ea6fe65
 
0da5581
 
 
 
 
 
33d1292
0da5581
 
 
 
 
 
33d1292
 
0da5581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa13e11
 
0da5581
fa13e11
33d1292
 
0da5581
fa13e11
33d1292
 
 
ea6fe65
2f95140
33d1292
 
25295dc
0da5581
ea6fe65
 
33d1292
 
 
 
 
8968d05
33d1292
 
8968d05
33d1292
fa13e11
25295dc
33d1292
0da5581
 
fa13e11
25295dc
0da5581
fa13e11
0da5581
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
library_name: transformers
license: apache-2.0
datasets:
- HuggingFaceTB/smoltalk
- HuggingFaceH4/ultrafeedback_binarized
base_model:
- SmallDoge/Doge-20M
language:
- en
pipeline_tag: question-answering
---


# **Doge 20M Instruct**

<div align="center">
  <img src="https://huggingface.co/spaces/SmallDoge/README/resolve/main/org_icon.png" width="100%" alt="SmallDoge" />
</div>
<hr>
<div align="center">
  <a href="https://arxiv.org/abs/2412.11834" target="_blank" style="margin: 2px;">
    <img alt="arXiv" src="https://img.shields.io/static/v1?label=arXiv&message=2412.11834&color=B31B1B&logo=arXiv" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://github.com/SmallDoges/small-doge" target="_blank" style="margin: 2px;">
    <img alt="GitHub" src="https://img.shields.io/badge/GitHub-SmallDoge-181717?logo=github" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://huggingface.co/SmallDoge" target="_blank" style="margin: 2px;">
    <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-SmallDoge-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://github.com/SmallDoges/small-doge/blob/main/LICENSE" style="margin: 2px;">
    <img alt="License" src="https://img.shields.io/badge/License-Apache--2.0-blue.svg" style="display: inline-block; vertical-align: middle;"/>
  </a>
</div>

Doge uses Dynamic Mask Attention as sequence transformation and can use Multi-Layer Perceptron or Cross Domain Mixture of Experts as state transformation. Dynamic Mask Attention allows the Transformer to use self-attention during training and state space during inference, and Cross Domain Mixture of Experts can directly inherit the weights of Multi-Layer Perceptron for further training. This model is trained by [SmallDoge](https://huggingface.co/SmallDoge) community, for detailed algorithm and model architecture, please refer to [Wonderful Matrices](https://arxiv.org/abs/2412.11834), all training details and code are publicly available on the [small-doge](https://github.com/SmallDoges/small-doge) repository.


## Uses

```python
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, TextStreamer

tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-20M-Instruct")
model = AutoModelForCausalLM.from_pretrained("SmallDoge/Doge-20M-Instruct", trust_remote_code=True)

generation_config = GenerationConfig(
      max_new_tokens=100, 
      use_cache=True, 
      do_sample=True, 
      temperature=0.8, 
      top_p=0.9,
      repetition_penalty=1.0
)
steamer = TextStreamer(
      tokenizer=tokenizer, 
      skip_prompt=True
)

prompt = "Hi, how are you doing today?"
conversation = [
      {"role": "user", "content": prompt}
]
inputs = tokenizer.apply_chat_template(
    conversation=conversation,
    tokenize=True,
    return_tensors="pt",
)

outputs = model.generate(
    inputs, 
    tokenizer=tokenizer,
    generation_config=generation_config, 
    streamer=steamer
)
```


## Model Details

We build the Doge-Instruct by first SFT on [SmolTalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk) and then DPO on [UltraFeedback Binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized).

> TODO: The larger model is under training and will be uploaded soon.

**SFT**:
| Model | Training Data | Epochs | Content Length | LR | Batch Size | Precision |
|---|---|---|---|---|---|---|
| [Doge-20M-Instruct-SFT](https://huggingface.co/SmallDoge/Doge-20M-Instruct-SFT) | [HuggingFaceTB/smoltalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk) | 2 | 2048 | 8e-4 | 0.25M | bfloat16 |
| [Doge-60M-Instruct-SFT](https://huggingface.co/SmallDoge/Doge-60M-Instruct-SFT) | [HuggingFaceTB/smoltalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk) | 2 | 2048 | 6e-4 | 0.25M | bfloat16 |

**DPO**:
| Model | Training Data | Epochs | Content Length | LR | Batch Size | Precision |
|---|---|---|---|---|---|---|
| [Doge-20M-Instruct](https://huggingface.co/SmallDoge/Doge-20M-Instruct) | [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized) | 2 | 1024 | 8e-5 | 0.125M | bfloat16 |
| [Doge-60M-Instruct](https://huggingface.co/SmallDoge/Doge-60M-Instruct) | [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized) | 2 | 1024 | 6e-5 | 0.125M | bfloat16 |


**Procedure**:

**SFT**:
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/loser_cheems/huggingface/runs/eohr6fuj) 

**DPO**:
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/loser_cheems/huggingface/runs/h6c2p2fe)


**Environment**:
- Image: nvcr.io/nvidia/pytorch:24.12-py3
- Hardware: 1x NVIDIA RTX 4090
- Software: Transformers, TRL


## Citation

```bibtex
@misc{shi2024wonderfulmatrices,
      title={Wonderful Matrices: Combining for a More Efficient and Effective Foundation Model Architecture}, 
      author={Jingze Shi and Bingheng Wu},
      year={2024},
      eprint={2412.11834},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2412.11834}, 
}
```