|
|
--- |
|
|
license: apache-2.0 |
|
|
tags: |
|
|
- keras |
|
|
- tensorflow |
|
|
- computer-vision |
|
|
- medical |
|
|
- dermatology |
|
|
- image-classification |
|
|
- skin-disease |
|
|
- efficientnet |
|
|
- healthcare |
|
|
library_name: keras |
|
|
pipeline_tag: image-classification |
|
|
--- |
|
|
|
|
|
# DermaAI - Skin Disease Classification Model |
|
|
|
|
|
A deep learning model for classifying skin diseases using computer vision. This model can identify 5 different skin conditions with confidence scores and medical recommendations. |
|
|
|
|
|
## π₯ Supported Skin Conditions |
|
|
|
|
|
The model can classify the following skin diseases: |
|
|
|
|
|
1. **Atopic Dermatitis** - A chronic inflammatory skin condition |
|
|
2. **Eczema** - Inflammatory skin condition causing red, itchy patches |
|
|
3. **Psoriasis** - Autoimmune condition causing scaly skin patches |
|
|
4. **Seborrheic Keratoses** - Common benign skin growths |
|
|
5. **Tinea Ringworm Candidiasis** - Fungal skin infections |
|
|
|
|
|
## π§ Model Details |
|
|
|
|
|
- **Model Type**: Keras/TensorFlow model based on EfficientNetV2 |
|
|
- **Task**: Image Classification (Multi-class) |
|
|
- **Domain**: Medical/Dermatology |
|
|
- **Framework**: TensorFlow/Keras |
|
|
- **Input Size**: 224x224x3 (RGB images) |
|
|
- **Output**: 5-class probability distribution |
|
|
- **Preprocessing**: EfficientNetV2 preprocessing |
|
|
|
|
|
## π Quick Start |
|
|
|
|
|
### Basic Usage |
|
|
|
|
|
```python |
|
|
import tensorflow as tf |
|
|
from huggingface_hub import hf_hub_download |
|
|
import numpy as np |
|
|
from PIL import Image |
|
|
from tensorflow.keras.applications.efficientnet_v2 import preprocess_input |
|
|
|
|
|
# Download and load the model |
|
|
model_path = hf_hub_download(repo_id="Siraja704/DermaAI", filename="DermaAI.keras") |
|
|
model = tf.keras.models.load_model(model_path) |
|
|
|
|
|
# Class names |
|
|
class_names = [ |
|
|
'Atopic Dermatitis', |
|
|
'Eczema', |
|
|
'Psoriasis', |
|
|
'Seborrheic Keratoses', |
|
|
'Tinea Ringworm Candidiasis' |
|
|
] |
|
|
|
|
|
# Prediction function |
|
|
def predict_skin_condition(image_path): |
|
|
# Load and preprocess image |
|
|
image = Image.open(image_path).convert('RGB') |
|
|
image = image.resize((224, 224)) |
|
|
image_array = np.array(image) |
|
|
image_array = preprocess_input(image_array) |
|
|
image_array = np.expand_dims(image_array, axis=0) |
|
|
|
|
|
# Make prediction |
|
|
predictions = model.predict(image_array) |
|
|
predicted_class_index = np.argmax(predictions[0]) |
|
|
predicted_class = class_names[predicted_class_index] |
|
|
confidence = predictions[0][predicted_class_index] * 100 |
|
|
|
|
|
return predicted_class, confidence |
|
|
|
|
|
# Example usage |
|
|
prediction, confidence = predict_skin_condition("path/to/your/image.jpg") |
|
|
print(f"Prediction: {prediction} ({confidence:.2f}% confidence)") |
|
|
``` |
|
|
|
|
|
## π Flask API Usage |
|
|
|
|
|
Create a complete web API for skin disease classification: |
|
|
|
|
|
### 1. Install Dependencies |
|
|
|
|
|
```bash |
|
|
pip install flask numpy tensorflow pillow flask-cors huggingface-hub |
|
|
``` |
|
|
|
|
|
### 2. Create Flask Application (`app.py`) |
|
|
|
|
|
```python |
|
|
from flask import Flask, request, jsonify |
|
|
import numpy as np |
|
|
import tensorflow as tf |
|
|
import base64 |
|
|
import io |
|
|
from PIL import Image |
|
|
from flask_cors import CORS |
|
|
from tensorflow.keras.applications.efficientnet_v2 import preprocess_input |
|
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
app = Flask(__name__) |
|
|
CORS(app) |
|
|
|
|
|
# Download and load the model from Hugging Face |
|
|
print("Downloading model from Hugging Face...") |
|
|
model_path = hf_hub_download(repo_id="Siraja704/DermaAI", filename="DermaAI.keras") |
|
|
model = tf.keras.models.load_model(model_path) |
|
|
print("β
Model loaded successfully!") |
|
|
|
|
|
# Class names |
|
|
class_names = [ |
|
|
'Atopic Dermatitis', |
|
|
'Eczema', |
|
|
'Psoriasis', |
|
|
'Seborrheic Keratoses', |
|
|
'Tinea Ringworm Candidiasis' |
|
|
] |
|
|
|
|
|
@app.route('/predict', methods=['POST']) |
|
|
def predict(): |
|
|
try: |
|
|
data = request.json |
|
|
if not data or 'image' not in data: |
|
|
return jsonify({'error': 'No image data provided'}), 400 |
|
|
|
|
|
# Process base64 image |
|
|
image_data = data['image'] |
|
|
if 'base64,' in image_data: |
|
|
image_data = image_data.split('base64,')[1] |
|
|
|
|
|
# Decode and preprocess image |
|
|
decoded_image = base64.b64decode(image_data) |
|
|
image = Image.open(io.BytesIO(decoded_image)).convert('RGB') |
|
|
image = image.resize((224, 224)) |
|
|
image_array = np.array(image) |
|
|
image_array = preprocess_input(image_array) |
|
|
image_array = np.expand_dims(image_array, axis=0) |
|
|
|
|
|
# Make prediction |
|
|
predictions = model.predict(image_array) |
|
|
predicted_class_index = int(np.argmax(predictions[0])) |
|
|
predicted_class = class_names[predicted_class_index] |
|
|
confidence = float(predictions[0][predicted_class_index] * 100) |
|
|
|
|
|
# Get top alternatives |
|
|
top_indices = np.argsort(predictions[0])[-3:][::-1] |
|
|
top_predictions = [ |
|
|
{ |
|
|
'class': class_names[i], |
|
|
'confidence': float(predictions[0][i] * 100) |
|
|
} |
|
|
for i in top_indices if i != predicted_class_index |
|
|
] |
|
|
|
|
|
# Generate medical recommendation |
|
|
if confidence < 10: |
|
|
recommendation = "Very low confidence. Please retake image with better lighting and focus." |
|
|
elif confidence < 30: |
|
|
recommendation = "Low confidence. Preliminary result only. Consult a dermatologist." |
|
|
elif confidence < 60: |
|
|
recommendation = "Moderate confidence. Consider alternatives and consult healthcare professional." |
|
|
else: |
|
|
recommendation = "High confidence prediction. Always consult healthcare professional for confirmation." |
|
|
|
|
|
return jsonify({ |
|
|
'prediction': predicted_class, |
|
|
'confidence': round(confidence, 2), |
|
|
'all_confidences': { |
|
|
class_names[i]: float(pred * 100) for i, pred in enumerate(predictions[0]) |
|
|
}, |
|
|
'top_alternatives': top_predictions, |
|
|
'recommendation': recommendation |
|
|
}) |
|
|
|
|
|
except Exception as e: |
|
|
return jsonify({'error': str(e)}), 500 |
|
|
|
|
|
@app.route('/health', methods=['GET']) |
|
|
def health(): |
|
|
return jsonify({'status': 'healthy', 'model_loaded': True}) |
|
|
|
|
|
if __name__ == '__main__': |
|
|
app.run(host='0.0.0.0', port=5001, debug=True) |
|
|
``` |
|
|
|
|
|
### 3. Run the API |
|
|
|
|
|
```bash |
|
|
python app.py |
|
|
``` |
|
|
|
|
|
The API will be available at `http://localhost:5001` |
|
|
|
|
|
### 4. API Usage Examples |
|
|
|
|
|
**Python Client:** |
|
|
```python |
|
|
import requests |
|
|
import base64 |
|
|
|
|
|
def predict_image(image_path, api_url="http://localhost:5001/predict"): |
|
|
with open(image_path, "rb") as image_file: |
|
|
encoded_string = base64.b64encode(image_file.read()).decode('utf-8') |
|
|
|
|
|
data = {"image": f"data:image/jpeg;base64,{encoded_string}"} |
|
|
response = requests.post(api_url, json=data) |
|
|
return response.json() |
|
|
|
|
|
# Usage |
|
|
result = predict_image("skin_image.jpg") |
|
|
print(f"Prediction: {result['prediction']} ({result['confidence']}%)") |
|
|
``` |
|
|
|
|
|
**JavaScript Client:** |
|
|
```javascript |
|
|
async function predictSkinCondition(imageFile) { |
|
|
const base64 = await new Promise((resolve) => { |
|
|
const reader = new FileReader(); |
|
|
reader.onload = () => resolve(reader.result); |
|
|
reader.readAsDataURL(imageFile); |
|
|
}); |
|
|
|
|
|
const response = await fetch('http://localhost:5001/predict', { |
|
|
method: 'POST', |
|
|
headers: {'Content-Type': 'application/json'}, |
|
|
body: JSON.stringify({image: base64}) |
|
|
}); |
|
|
|
|
|
return await response.json(); |
|
|
} |
|
|
``` |
|
|
|
|
|
**cURL:** |
|
|
```bash |
|
|
curl -X POST http://localhost:5001/predict \ |
|
|
-H "Content-Type: application/json" \ |
|
|
-d '{"image": "_BASE64_IMAGE_HERE"}' |
|
|
``` |
|
|
|
|
|
## π API Response Format |
|
|
|
|
|
```json |
|
|
{ |
|
|
"prediction": "Eczema", |
|
|
"confidence": 85.23, |
|
|
"all_confidences": { |
|
|
"Atopic Dermatitis": 12.45, |
|
|
"Eczema": 85.23, |
|
|
"Psoriasis": 1.32, |
|
|
"Seborrheic Keratoses": 0.67, |
|
|
"Tinea Ringworm Candidiasis": 0.33 |
|
|
}, |
|
|
"top_alternatives": [ |
|
|
{ |
|
|
"class": "Atopic Dermatitis", |
|
|
"confidence": 12.45 |
|
|
} |
|
|
], |
|
|
"recommendation": "High confidence prediction. Always consult healthcare professional for confirmation." |
|
|
} |
|
|
``` |
|
|
|
|
|
## πΌοΈ Image Requirements |
|
|
|
|
|
- **Formats**: JPG, PNG, WebP, and other common formats |
|
|
- **Size**: Automatically resized to 224x224 pixels |
|
|
- **Quality**: High-resolution images with good lighting work best |
|
|
- **Focus**: Ensure affected skin area is clearly visible |
|
|
|
|
|
## π³ Docker Deployment |
|
|
|
|
|
**Dockerfile:** |
|
|
```dockerfile |
|
|
FROM python:3.9-slim |
|
|
|
|
|
WORKDIR /app |
|
|
COPY requirements.txt . |
|
|
RUN pip install -r requirements.txt |
|
|
COPY app.py . |
|
|
EXPOSE 5001 |
|
|
CMD ["python", "app.py"] |
|
|
``` |
|
|
|
|
|
**Requirements.txt:** |
|
|
```txt |
|
|
flask>=2.0.0 |
|
|
numpy>=1.21.0 |
|
|
tensorflow>=2.13.0 |
|
|
pillow>=9.0.0 |
|
|
flask-cors>=3.0.0 |
|
|
huggingface-hub>=0.20.0 |
|
|
``` |
|
|
|
|
|
**Build and Run:** |
|
|
```bash |
|
|
docker build -t dermaai-api . |
|
|
docker run -p 5001:5001 dermaai-api |
|
|
``` |
|
|
|
|
|
## βοΈ Important Medical Disclaimer |
|
|
|
|
|
**This model is for educational and research purposes only. It should NOT be used as a substitute for professional medical diagnosis or treatment. Always consult qualified healthcare professionals for proper medical evaluation and treatment of skin conditions.** |
|
|
|
|
|
## π Performance Notes |
|
|
|
|
|
- **Input**: 224x224 RGB images |
|
|
- **Preprocessing**: EfficientNetV2 normalization |
|
|
- **Architecture**: Based on EfficientNetV2 |
|
|
- **Classes**: 5 skin disease categories |
|
|
- **Confidence Levels**: |
|
|
- Low: < 30% (requires professional consultation) |
|
|
- Moderate: 30-60% (consider alternatives) |
|
|
- High: > 60% (still requires medical confirmation) |
|
|
|
|
|
## π€ Citation |
|
|
|
|
|
If you use this model in your research or applications, please cite appropriately: |
|
|
|
|
|
```bibtex |
|
|
@misc{dermaai2024, |
|
|
title={DermaAI: Deep Learning Model for Skin Disease Classification}, |
|
|
author={Siraja704}, |
|
|
year={2024}, |
|
|
publisher={Hugging Face}, |
|
|
url={https://huggingface.co/Siraja704/DermaAI} |
|
|
} |
|
|
``` |
|
|
|
|
|
## π License |
|
|
|
|
|
Licensed under the Apache 2.0 License. See the LICENSE file for details. |
|
|
|
|
|
## π Links |
|
|
|
|
|
- **Model Repository**: [Siraja704/DermaAI](https://huggingface.co/Siraja704/DermaAI) |
|
|
- **Framework**: [TensorFlow](https://tensorflow.org) |
|
|
- **Base Architecture**: [EfficientNetV2](https://arxiv.org/abs/2104.00298) |
|
|
|