File size: 9,957 Bytes
94d1672
 
 
 
 
 
 
 
 
602b58b
 
 
94d1672
602b58b
94d1672
 
602b58b
94d1672
602b58b
94d1672
602b58b
94d1672
602b58b
94d1672
602b58b
 
 
 
 
94d1672
602b58b
 
 
 
94d1672
 
602b58b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94d1672
602b58b
 
 
 
 
 
 
94d1672
 
602b58b
 
94d1672
602b58b
 
 
 
 
94d1672
 
602b58b
 
94d1672
602b58b
 
 
94d1672
602b58b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94d1672
602b58b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94d1672
 
602b58b
 
 
 
 
 
 
 
 
94d1672
602b58b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94d1672
602b58b
94d1672
602b58b
94d1672
602b58b
94d1672
602b58b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
---
license: apache-2.0
tags:
- keras
- tensorflow
- computer-vision
- medical
- dermatology
- image-classification
- skin-disease
- efficientnet
- healthcare
library_name: keras
pipeline_tag: image-classification
---

# DermaAI - Skin Disease Classification Model

A deep learning model for classifying skin diseases using computer vision. This model can identify 5 different skin conditions with confidence scores and medical recommendations.

## πŸ₯ Supported Skin Conditions

The model can classify the following skin diseases:

1. **Atopic Dermatitis** - A chronic inflammatory skin condition
2. **Eczema** - Inflammatory skin condition causing red, itchy patches  
3. **Psoriasis** - Autoimmune condition causing scaly skin patches
4. **Seborrheic Keratoses** - Common benign skin growths
5. **Tinea Ringworm Candidiasis** - Fungal skin infections

## πŸ”§ Model Details

- **Model Type**: Keras/TensorFlow model based on EfficientNetV2
- **Task**: Image Classification (Multi-class)
- **Domain**: Medical/Dermatology
- **Framework**: TensorFlow/Keras
- **Input Size**: 224x224x3 (RGB images)
- **Output**: 5-class probability distribution
- **Preprocessing**: EfficientNetV2 preprocessing

## πŸš€ Quick Start

### Basic Usage

```python
import tensorflow as tf
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
from tensorflow.keras.applications.efficientnet_v2 import preprocess_input

# Download and load the model
model_path = hf_hub_download(repo_id="Siraja704/DermaAI", filename="DermaAI.keras")
model = tf.keras.models.load_model(model_path)

# Class names
class_names = [
    'Atopic Dermatitis',
    'Eczema', 
    'Psoriasis',
    'Seborrheic Keratoses',
    'Tinea Ringworm Candidiasis'
]

# Prediction function
def predict_skin_condition(image_path):
    # Load and preprocess image
    image = Image.open(image_path).convert('RGB')
    image = image.resize((224, 224))
    image_array = np.array(image)
    image_array = preprocess_input(image_array)
    image_array = np.expand_dims(image_array, axis=0)
    
    # Make prediction
    predictions = model.predict(image_array)
    predicted_class_index = np.argmax(predictions[0])
    predicted_class = class_names[predicted_class_index]
    confidence = predictions[0][predicted_class_index] * 100
    
    return predicted_class, confidence

# Example usage
prediction, confidence = predict_skin_condition("path/to/your/image.jpg")
print(f"Prediction: {prediction} ({confidence:.2f}% confidence)")
```

## 🌐 Flask API Usage

Create a complete web API for skin disease classification:

### 1. Install Dependencies

```bash
pip install flask numpy tensorflow pillow flask-cors huggingface-hub
```

### 2. Create Flask Application (`app.py`)

```python
from flask import Flask, request, jsonify
import numpy as np
import tensorflow as tf
import base64
import io
from PIL import Image
from flask_cors import CORS
from tensorflow.keras.applications.efficientnet_v2 import preprocess_input
from huggingface_hub import hf_hub_download

app = Flask(__name__)
CORS(app)

# Download and load the model from Hugging Face
print("Downloading model from Hugging Face...")
model_path = hf_hub_download(repo_id="Siraja704/DermaAI", filename="DermaAI.keras")
model = tf.keras.models.load_model(model_path)
print("βœ… Model loaded successfully!")

# Class names
class_names = [
    'Atopic Dermatitis',
    'Eczema',
    'Psoriasis', 
    'Seborrheic Keratoses',
    'Tinea Ringworm Candidiasis'
]

@app.route('/predict', methods=['POST'])
def predict():
    try:
        data = request.json
        if not data or 'image' not in data:
            return jsonify({'error': 'No image data provided'}), 400
        
        # Process base64 image
        image_data = data['image']
        if 'base64,' in image_data:
            image_data = image_data.split('base64,')[1]
        
        # Decode and preprocess image
        decoded_image = base64.b64decode(image_data)
        image = Image.open(io.BytesIO(decoded_image)).convert('RGB')
        image = image.resize((224, 224))
        image_array = np.array(image)
        image_array = preprocess_input(image_array)
        image_array = np.expand_dims(image_array, axis=0)

        # Make prediction
        predictions = model.predict(image_array)
        predicted_class_index = int(np.argmax(predictions[0]))
        predicted_class = class_names[predicted_class_index]
        confidence = float(predictions[0][predicted_class_index] * 100)

        # Get top alternatives
        top_indices = np.argsort(predictions[0])[-3:][::-1]
        top_predictions = [
            {
                'class': class_names[i],
                'confidence': float(predictions[0][i] * 100)
            }
            for i in top_indices if i != predicted_class_index
        ]

        # Generate medical recommendation
        if confidence < 10:
            recommendation = "Very low confidence. Please retake image with better lighting and focus."
        elif confidence < 30:
            recommendation = "Low confidence. Preliminary result only. Consult a dermatologist."
        elif confidence < 60:
            recommendation = "Moderate confidence. Consider alternatives and consult healthcare professional."
        else:
            recommendation = "High confidence prediction. Always consult healthcare professional for confirmation."

        return jsonify({
            'prediction': predicted_class,
            'confidence': round(confidence, 2),
            'all_confidences': {
                class_names[i]: float(pred * 100) for i, pred in enumerate(predictions[0])
            },
            'top_alternatives': top_predictions,
            'recommendation': recommendation
        })

    except Exception as e:
        return jsonify({'error': str(e)}), 500

@app.route('/health', methods=['GET'])
def health():
    return jsonify({'status': 'healthy', 'model_loaded': True})

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=5001, debug=True)
```

### 3. Run the API

```bash
python app.py
```

The API will be available at `http://localhost:5001`

### 4. API Usage Examples

**Python Client:**
```python
import requests
import base64

def predict_image(image_path, api_url="http://localhost:5001/predict"):
    with open(image_path, "rb") as image_file:
        encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
    
    data = {"image": f"data:image/jpeg;base64,{encoded_string}"}
    response = requests.post(api_url, json=data)
    return response.json()

# Usage
result = predict_image("skin_image.jpg")
print(f"Prediction: {result['prediction']} ({result['confidence']}%)")
```

**JavaScript Client:**
```javascript
async function predictSkinCondition(imageFile) {
    const base64 = await new Promise((resolve) => {
        const reader = new FileReader();
        reader.onload = () => resolve(reader.result);
        reader.readAsDataURL(imageFile);
    });
    
    const response = await fetch('http://localhost:5001/predict', {
        method: 'POST',
        headers: {'Content-Type': 'application/json'},
        body: JSON.stringify({image: base64})
    });
    
    return await response.json();
}
```

**cURL:**
```bash
curl -X POST http://localhost:5001/predict \
  -H "Content-Type: application/json" \
  -d '{"image": "_BASE64_IMAGE_HERE"}'
```

## πŸ“‹ API Response Format

```json
{
    "prediction": "Eczema",
    "confidence": 85.23,
    "all_confidences": {
        "Atopic Dermatitis": 12.45,
        "Eczema": 85.23,
        "Psoriasis": 1.32,
        "Seborrheic Keratoses": 0.67,
        "Tinea Ringworm Candidiasis": 0.33
    },
    "top_alternatives": [
        {
            "class": "Atopic Dermatitis",
            "confidence": 12.45
        }
    ],
    "recommendation": "High confidence prediction. Always consult healthcare professional for confirmation."
}
```

## πŸ–ΌοΈ Image Requirements

- **Formats**: JPG, PNG, WebP, and other common formats
- **Size**: Automatically resized to 224x224 pixels
- **Quality**: High-resolution images with good lighting work best
- **Focus**: Ensure affected skin area is clearly visible

## 🐳 Docker Deployment

**Dockerfile:**
```dockerfile
FROM python:3.9-slim

WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY app.py .
EXPOSE 5001
CMD ["python", "app.py"]
```

**Requirements.txt:**
```txt
flask>=2.0.0
numpy>=1.21.0
tensorflow>=2.13.0
pillow>=9.0.0
flask-cors>=3.0.0
huggingface-hub>=0.20.0
```

**Build and Run:**
```bash
docker build -t dermaai-api .
docker run -p 5001:5001 dermaai-api
```

## βš•οΈ Important Medical Disclaimer

**This model is for educational and research purposes only. It should NOT be used as a substitute for professional medical diagnosis or treatment. Always consult qualified healthcare professionals for proper medical evaluation and treatment of skin conditions.**

## πŸ“Š Performance Notes

- **Input**: 224x224 RGB images
- **Preprocessing**: EfficientNetV2 normalization
- **Architecture**: Based on EfficientNetV2
- **Classes**: 5 skin disease categories
- **Confidence Levels**:
  - Low: < 30% (requires professional consultation)
  - Moderate: 30-60% (consider alternatives)
  - High: > 60% (still requires medical confirmation)

## 🀝 Citation

If you use this model in your research or applications, please cite appropriately:

```bibtex
@misc{dermaai2024,
  title={DermaAI: Deep Learning Model for Skin Disease Classification},
  author={Siraja704},
  year={2024},
  publisher={Hugging Face},
  url={https://huggingface.co/Siraja704/DermaAI}
}
```

## πŸ“ License

Licensed under the Apache 2.0 License. See the LICENSE file for details.

## πŸ”— Links

- **Model Repository**: [Siraja704/DermaAI](https://huggingface.co/Siraja704/DermaAI)
- **Framework**: [TensorFlow](https://tensorflow.org)
- **Base Architecture**: [EfficientNetV2](https://arxiv.org/abs/2104.00298)