|
--- |
|
base_model: microsoft/mdeberta-v3-base |
|
datasets: |
|
- eriktks/conll2003 |
|
language: |
|
- en |
|
library_name: transformers |
|
license: mit |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
pipeline_tag: token-classification |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: mdeberta |
|
results: |
|
- task: |
|
type: token-classification |
|
name: Token Classification |
|
dataset: |
|
name: eriktks/conll2003 |
|
type: eriktks/conll2003 |
|
config: conll2003 |
|
split: validation |
|
args: conll2003 |
|
metrics: |
|
- type: precision |
|
value: 0.9566232899566233 |
|
name: Precision |
|
- type: recall |
|
value: 0.9649949511948839 |
|
name: Recall |
|
- type: f1 |
|
value: 0.9607908847184986 |
|
name: F1 |
|
- type: accuracy |
|
value: 0.9929130485572991 |
|
name: Accuracy |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mdeberta-v3-base-conll2003-en |
|
|
|
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the [eriktks/conll2003](https://huggingface.co/datasets/eriktks/conll2003) dataset (English split of the CONLL 2003). |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0342 |
|
- Precision: 0.9566 |
|
- Recall: 0.9650 |
|
- F1: 0.9608 |
|
- Accuracy: 0.9929 |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 439 | 0.0509 | 0.9303 | 0.9456 | 0.9379 | 0.9890 | |
|
| 0.1482 | 2.0 | 878 | 0.0359 | 0.9501 | 0.9583 | 0.9542 | 0.9918 | |
|
| 0.0335 | 3.0 | 1317 | 0.0338 | 0.9530 | 0.9615 | 0.9572 | 0.9924 | |
|
| 0.0191 | 4.0 | 1756 | 0.0346 | 0.9538 | 0.9635 | 0.9586 | 0.9926 | |
|
| 0.0137 | 5.0 | 2195 | 0.0342 | 0.9566 | 0.9650 | 0.9608 | 0.9929 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.19.1 |