File size: 2,570 Bytes
d2bb298
d832f16
 
 
8d86c59
 
 
 
d832f16
 
 
 
 
8d86c59
 
 
d832f16
 
 
 
 
8d86c59
d832f16
 
 
 
 
 
 
8d86c59
d832f16
8d86c59
 
d832f16
8d86c59
 
d832f16
8d86c59
 
d832f16
8d86c59
d2bb298
 
d832f16
 
d2bb298
048f3ce
d2bb298
048f3ce
d832f16
 
 
 
 
 
d2bb298
d832f16
d2bb298
d832f16
d2bb298
d832f16
 
 
 
 
 
 
 
 
 
 
d2bb298
d832f16
d2bb298
d832f16
 
 
 
 
 
 
d2bb298
 
d832f16
d2bb298
d832f16
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
base_model: microsoft/mdeberta-v3-base
datasets:
- eriktks/conll2003
language:
- en
library_name: transformers
license: mit
metrics:
- precision
- recall
- f1
- accuracy
pipeline_tag: token-classification
tags:
- generated_from_trainer
model-index:
- name: mdeberta
  results:
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: eriktks/conll2003
      type: eriktks/conll2003
      config: conll2003
      split: validation
      args: conll2003
    metrics:
    - type: precision
      value: 0.9566232899566233
      name: Precision
    - type: recall
      value: 0.9649949511948839
      name: Recall
    - type: f1
      value: 0.9607908847184986
      name: F1
    - type: accuracy
      value: 0.9929130485572991
      name: Accuracy
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mdeberta-v3-base-conll2003-en

This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the [eriktks/conll2003](https://huggingface.co/datasets/eriktks/conll2003) dataset (English split of the CONLL 2003).
It achieves the following results on the evaluation set:
- Loss: 0.0342
- Precision: 0.9566
- Recall: 0.9650
- F1: 0.9608
- Accuracy: 0.9929

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 439  | 0.0509          | 0.9303    | 0.9456 | 0.9379 | 0.9890   |
| 0.1482        | 2.0   | 878  | 0.0359          | 0.9501    | 0.9583 | 0.9542 | 0.9918   |
| 0.0335        | 3.0   | 1317 | 0.0338          | 0.9530    | 0.9615 | 0.9572 | 0.9924   |
| 0.0191        | 4.0   | 1756 | 0.0346          | 0.9538    | 0.9635 | 0.9586 | 0.9926   |
| 0.0137        | 5.0   | 2195 | 0.0342          | 0.9566    | 0.9650 | 0.9608 | 0.9929   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1