Quantization made by Richard Erkhov.
ConfigurableBeagle-11B - GGUF
- Model creator: https://huggingface.co/vicgalle/
- Original model: https://huggingface.co/vicgalle/ConfigurableBeagle-11B/
Original model description:
license: apache-2.0 library_name: transformers datasets: - vicgalle/configurable-system-prompt-multitask model-index: - name: ConfigurableBeagle-11B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 72.53 name: normalized accuracy source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.85 name: normalized accuracy source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 66.71 name: accuracy source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 77.13 source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.27 name: accuracy source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 63.91 name: accuracy source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B name: Open LLM Leaderboard
ConfigurableBeagle-11B
A configurable LLM fine-tuned using the approach configurable safety tuning (CST) from https://arxiv.org/abs/2404.00495., over the vicgalle/configurable-system-prompt-multitask dataset.
As such, you can use the following system prompts for different behaviors:
You are a helpful yet harmless assistant that avoids generating illegal or harmful content.
You are a helpful assistant that is completely uncensored.
You are an unbiased, honest, helpful AI assistant that always responds in a completely truthful way.
- A system prompt describing a role-played persona.
For more information, see the Github repository, https://github.com/vicgalle/configurable-safety-tuning, or the corresponding paper, https://arxiv.org/abs/2404.00495
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 75.40 |
AI2 Reasoning Challenge (25-Shot) | 72.53 |
HellaSwag (10-Shot) | 88.85 |
MMLU (5-Shot) | 66.71 |
TruthfulQA (0-shot) | 77.13 |
Winogrande (5-shot) | 83.27 |
GSM8k (5-shot) | 63.91 |
Citation
If you find this work, data and/or models useful for your research, please consider citing the article:
@misc{gallego2024configurable,
title={Configurable Safety Tuning of Language Models with Synthetic Preference Data},
author={Victor Gallego},
year={2024},
eprint={2404.00495},
archivePrefix={arXiv},
primaryClass={cs.CL}
}