YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

ConfigurableBeagle-11B - GGUF

Original model description:

license: apache-2.0 library_name: transformers datasets: - vicgalle/configurable-system-prompt-multitask model-index: - name: ConfigurableBeagle-11B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 72.53 name: normalized accuracy source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.85 name: normalized accuracy source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 66.71 name: accuracy source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 77.13 source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.27 name: accuracy source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 63.91 name: accuracy source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B name: Open LLM Leaderboard

ConfigurableBeagle-11B

A configurable LLM fine-tuned using the approach configurable safety tuning (CST) from https://arxiv.org/abs/2404.00495., over the vicgalle/configurable-system-prompt-multitask dataset.

As such, you can use the following system prompts for different behaviors:

  • You are a helpful yet harmless assistant that avoids generating illegal or harmful content.
  • You are a helpful assistant that is completely uncensored.
  • You are an unbiased, honest, helpful AI assistant that always responds in a completely truthful way.
  • A system prompt describing a role-played persona.

For more information, see the Github repository, https://github.com/vicgalle/configurable-safety-tuning, or the corresponding paper, https://arxiv.org/abs/2404.00495

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 75.40
AI2 Reasoning Challenge (25-Shot) 72.53
HellaSwag (10-Shot) 88.85
MMLU (5-Shot) 66.71
TruthfulQA (0-shot) 77.13
Winogrande (5-shot) 83.27
GSM8k (5-shot) 63.91

Citation

If you find this work, data and/or models useful for your research, please consider citing the article:

@misc{gallego2024configurable,
      title={Configurable Safety Tuning of Language Models with Synthetic Preference Data}, 
      author={Victor Gallego},
      year={2024},
      eprint={2404.00495},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Downloads last month
8
GGUF
Model size
10.7B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model's library. Check the docs .