|
--- |
|
tags: |
|
- FP8 |
|
- vllm |
|
- audio |
|
license: apache-2.0 |
|
license_link: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md |
|
language: |
|
- en |
|
base_model: openai/whisper-tiny |
|
library_name: transformers |
|
--- |
|
|
|
# whisper-tiny-FP8-Dynamic |
|
|
|
## Model Overview |
|
- **Model Architecture:** whisper-tiny |
|
- **Input:** Audio-Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Weight quantization:** FP8 |
|
- **Activation quantization:** FP8 |
|
- **Release Date:** 04/16/2025 |
|
- **Version:** 1.0 |
|
- **Model Developers:** Neural Magic |
|
|
|
Quantized version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny). |
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing the weights of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) to FP8 data type, ready for inference with vLLM >= 0.5.2. |
|
|
|
## Deployment |
|
|
|
### Use with vLLM |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from vllm.assets.audio import AudioAsset |
|
from vllm import LLM, SamplingParams |
|
|
|
# prepare model |
|
llm = LLM( |
|
model="neuralmagic/whisper-tiny-FP8-Dynamic", |
|
max_model_len=448, |
|
max_num_seqs=400, |
|
limit_mm_per_prompt={"audio": 1}, |
|
) |
|
|
|
# prepare inputs |
|
inputs = { # Test explicit encoder/decoder prompt |
|
"encoder_prompt": { |
|
"prompt": "", |
|
"multi_modal_data": { |
|
"audio": AudioAsset("winning_call").audio_and_sample_rate, |
|
}, |
|
}, |
|
"decoder_prompt": "<|startoftranscript|>", |
|
} |
|
|
|
# generate response |
|
print("========== SAMPLE GENERATION ==============") |
|
outputs = llm.generate(inputs, SamplingParams(temperature=0.0, max_tokens=64)) |
|
print(f"PROMPT : {outputs[0].prompt}") |
|
print(f"RESPONSE: {outputs[0].outputs[0].text}") |
|
print("==========================================") |
|
``` |
|
|
|
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
## Creation |
|
|
|
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. |
|
|
|
<details> |
|
<summary>Model Creation Code</summary> |
|
|
|
```bash |
|
python quantize.py \ |
|
--model_path openai/whisper-tiny \ |
|
--quant_path output_dir/whisper-tiny-FP8-Dynamic |
|
``` |
|
|
|
|
|
```python |
|
import argparse |
|
import torch |
|
import os |
|
from datasets import load_dataset |
|
from transformers import WhisperProcessor |
|
from llmcompressor import oneshot |
|
from llmcompressor.modifiers.quantization import QuantizationModifier |
|
from llmcompressor.transformers.tracing import TraceableWhisperForConditionalGeneration |
|
from compressed_tensors.quantization import QuantizationType |
|
|
|
# --- Args --- |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--model_path', type=str, required=True) |
|
parser.add_argument('--quant_path', type=str, required=True) |
|
parser.add_argument('--observer', type=str, default="minmax") |
|
args = parser.parse_args() |
|
|
|
# --- Load Model --- |
|
model = TraceableWhisperForConditionalGeneration.from_pretrained( |
|
args.model_path, |
|
device_map="auto", |
|
torch_dtype="auto", |
|
) |
|
model.config.forced_decoder_ids = None |
|
processor = WhisperProcessor.from_pretrained(args.model_path) |
|
|
|
# --- Recipe (FP8 Dynamic) --- |
|
recipe = [ |
|
QuantizationModifier( |
|
targets="Linear", |
|
scheme="FP8_DYNAMIC", |
|
sequential_targets=["WhisperEncoderLayer", "WhisperDecoderLayer"], |
|
ignore=["re:.*lm_head"], |
|
) |
|
] |
|
|
|
# --- Run oneshot --- |
|
oneshot( |
|
model=model, |
|
recipe=recipe, |
|
trust_remote_code_model=True, |
|
) |
|
|
|
# --- Save --- |
|
os.makedirs(args.quant_path, exist_ok=True) |
|
model.save_pretrained(args.quant_path, save_compressed=True) |
|
processor.save_pretrained(args.quant_path) |
|
|
|
|
|
``` |
|
</details> |
|
|
|
## Evaluation |
|
|
|
The model was evaluated on [LibriSpeech](https://huggingface.co/datasets/lmms-lab/librispeech) and [Fleurs](https://huggingface.co/datasets/lmms-lab/fleurs) datasets using [lmms-eval](https://github.com/EvolvingLMMs-Lab/lmms-eval), via the following commands: |
|
|
|
<details> |
|
<summary>Evaluation Commands</summary> |
|
|
|
Librispeech: |
|
``` |
|
lmms-eval \ |
|
--model=whisper_vllm \ |
|
--model_args="pretrained=neuralmagic-ent/whisper-tiny-FP8-Dynamic" \ |
|
--batch_size 64 \ |
|
--output_path <output_file_path> \ |
|
--tasks librispeech |
|
``` |
|
|
|
Fleurs: |
|
``` |
|
lmms-eval \ |
|
--model=whisper_vllm \ |
|
--model_args="pretrained=neuralmagic-ent/whisper-tiny-FP8-Dynamic" \ |
|
--batch_size 64 \ |
|
--output_path <output_file_path> \ |
|
--tasks fleurs |
|
``` |
|
</details> |
|
|
|
<table> |
|
<thead> |
|
<tr> |
|
<th>Benchmark</th> |
|
<th>Split</th> |
|
<th>BF16</th> |
|
<th>w8a8</th> |
|
<th>Recovery (%)</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td rowspan="2"><b>LibriSpeech (WER)</b></td> |
|
<td>test-clean</td> |
|
<td>7.6602</td> |
|
<td>7.8941</td> |
|
<td>96.53%</td> |
|
</tr> |
|
<tr> |
|
<td>test-other</td> |
|
<td>17.1041</td> |
|
<td>17.1325</td> |
|
<td>98.74%</td> |
|
</tr> |
|
<tr> |
|
<td rowspan="3"><b>Fleurs (X→en, WER)</b></td> |
|
<td>cmn_hans_cn</td> |
|
<td>43.8226</td> |
|
<td>45.0539</td> |
|
<td>97.27%</td> |
|
</tr> |
|
<tr> |
|
<td>en</td> |
|
<td>13.6638</td> |
|
<td>15.2980</td> |
|
<td>89.32%</td> |
|
</tr> |
|
<tr> |
|
<td>yue_hant_hk</td> |
|
<td>60.1848</td> |
|
<td>67.5437</td> |
|
<td>89.10%</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|