File size: 5,334 Bytes
aa0dfad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf233b6
aa0dfad
fc902b4
 
 
aa0dfad
 
 
fc902b4
 
 
aa0dfad
 
 
fc902b4
 
 
aa0dfad
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
---
tags:
- FP8
- vllm
- audio
license: apache-2.0
license_link: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
language:
  - en
base_model: openai/whisper-tiny
library_name: transformers
---

# whisper-tiny-FP8-Dynamic

## Model Overview
- **Model Architecture:** whisper-tiny
  - **Input:** Audio-Text
  - **Output:** Text
- **Model Optimizations:**
  - **Weight quantization:** FP8
  - **Activation quantization:** FP8
- **Release Date:** 04/16/2025
- **Version:** 1.0
- **Model Developers:** Neural Magic

Quantized version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny).

### Model Optimizations

This model was obtained by quantizing the weights of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) to FP8 data type, ready for inference with vLLM >= 0.5.2.

## Deployment

### Use with vLLM

This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.

```python
from vllm.assets.audio import AudioAsset
from vllm import LLM, SamplingParams

# prepare model
llm = LLM(
    model="neuralmagic/whisper-tiny-FP8-Dynamic",
    max_model_len=448,
    max_num_seqs=400,
    limit_mm_per_prompt={"audio": 1},
)

# prepare inputs
inputs = {  # Test explicit encoder/decoder prompt
    "encoder_prompt": {
        "prompt": "",
        "multi_modal_data": {
            "audio": AudioAsset("winning_call").audio_and_sample_rate,
        },
    },
    "decoder_prompt": "<|startoftranscript|>",
}

# generate response
print("========== SAMPLE GENERATION ==============")
outputs = llm.generate(inputs, SamplingParams(temperature=0.0, max_tokens=64))
print(f"PROMPT  : {outputs[0].prompt}")
print(f"RESPONSE: {outputs[0].outputs[0].text}")
print("==========================================")
```

vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.

## Creation

This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. 

<details>
  <summary>Model Creation Code</summary>

```bash
python quantize.py \
    --model_path openai/whisper-tiny \
    --quant_path output_dir/whisper-tiny-FP8-Dynamic
```


```python
import argparse
import torch
import os
from datasets import load_dataset
from transformers import WhisperProcessor
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers.tracing import TraceableWhisperForConditionalGeneration
from compressed_tensors.quantization import QuantizationType

# --- Args ---
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str, required=True)
parser.add_argument('--quant_path', type=str, required=True)
parser.add_argument('--observer', type=str, default="minmax")
args = parser.parse_args()

# --- Load Model ---
model = TraceableWhisperForConditionalGeneration.from_pretrained(
    args.model_path,
    device_map="auto",
    torch_dtype="auto",
)
model.config.forced_decoder_ids = None
processor = WhisperProcessor.from_pretrained(args.model_path)

# --- Recipe (FP8 Dynamic) ---
recipe = [
    QuantizationModifier(
        targets="Linear",
        scheme="FP8_DYNAMIC",
        sequential_targets=["WhisperEncoderLayer", "WhisperDecoderLayer"],
        ignore=["re:.*lm_head"],
    )
]

# --- Run oneshot ---
oneshot(
    model=model,
    recipe=recipe,
    trust_remote_code_model=True,
)

# --- Save ---
os.makedirs(args.quant_path, exist_ok=True)
model.save_pretrained(args.quant_path, save_compressed=True)
processor.save_pretrained(args.quant_path)


```
</details>

## Evaluation

The model was evaluated on [LibriSpeech](https://huggingface.co/datasets/lmms-lab/librispeech) and [Fleurs](https://huggingface.co/datasets/lmms-lab/fleurs) datasets using [lmms-eval](https://github.com/EvolvingLMMs-Lab/lmms-eval), via the following commands:

<details>
<summary>Evaluation Commands</summary>
  
Librispeech:
```
lmms-eval \
    --model=whisper_vllm \
    --model_args="pretrained=neuralmagic-ent/whisper-tiny-FP8-Dynamic" \
    --batch_size 64 \
    --output_path <output_file_path> \
    --tasks librispeech
```

Fleurs:
```
lmms-eval \
    --model=whisper_vllm \
    --model_args="pretrained=neuralmagic-ent/whisper-tiny-FP8-Dynamic" \
    --batch_size 64 \
    --output_path <output_file_path> \
    --tasks fleurs
```
</details>

<table>
  <thead>
    <tr>
      <th>Benchmark</th>
      <th>Split</th>
      <th>BF16</th>
      <th>w8a8</th>
      <th>Recovery (%)</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td rowspan="2"><b>LibriSpeech (WER)</b></td>
      <td>test-clean</td>
      <td>7.6602</td>
      <td>7.8941</td>
      <td>96.53%</td>
    </tr>
    <tr>
      <td>test-other</td>
      <td>17.1041</td>
      <td>17.1325</td>
      <td>98.74%</td>
    </tr>
    <tr>
      <td rowspan="3"><b>Fleurs (X→en, WER)</b></td>
      <td>cmn_hans_cn</td>
      <td>43.8226</td>
      <td>45.0539</td>
      <td>97.27%</td>
    </tr>
    <tr>
      <td>en</td>
      <td>13.6638</td>
      <td>15.2980</td>
      <td>89.32%</td>
    </tr>
    <tr>
      <td>yue_hant_hk</td>
      <td>60.1848</td>
      <td>67.5437</td>
      <td>89.10%</td>
    </tr>
  </tbody>
</table>