|
--- |
|
tags: |
|
- vllm |
|
- vision |
|
- w4a16 |
|
license: gemma |
|
base_model: google/gemma-3-4b-it |
|
library_name: transformers |
|
--- |
|
|
|
# gemma-3-4b-it-quantized.w4a16 |
|
|
|
## Model Overview |
|
- **Model Architecture:** google/gemma-3-4b-it |
|
- **Input:** Vision-Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Weight quantization:** INT4 |
|
- **Activation quantization:** FP16 |
|
- **Release Date:** 6/4/2025 |
|
- **Version:** 1.0 |
|
- **Model Developers:** RedHatAI |
|
|
|
Quantized version of [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it). |
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing the weights of [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it) to INT4 data type, ready for inference with vLLM >= 0.8.0. |
|
|
|
## Deployment |
|
|
|
### Use with vLLM |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from vllm import LLM, SamplingParams |
|
from vllm.assets.image import ImageAsset |
|
from transformers import AutoProcessor |
|
|
|
# Define model name once |
|
model_name = "RedHatAI/gemma-3-4b-it-quantized.w4a16" |
|
|
|
# Load image and processor |
|
image = ImageAsset("cherry_blossom").pil_image.convert("RGB") |
|
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True) |
|
|
|
# Build multimodal prompt |
|
chat = [ |
|
{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "What is the content of this image?"}]}, |
|
{"role": "assistant", "content": []} |
|
] |
|
prompt = processor.apply_chat_template(chat, add_generation_prompt=True) |
|
|
|
# Initialize model |
|
llm = LLM(model=model_name, trust_remote_code=True) |
|
|
|
# Run inference |
|
inputs = {"prompt": prompt, "multi_modal_data": {"image": [image]}} |
|
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64)) |
|
|
|
# Display result |
|
print("RESPONSE:", outputs[0].outputs[0].text) |
|
|
|
``` |
|
|
|
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
## Creation |
|
|
|
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below: |
|
|
|
<details> |
|
<summary>Model Creation Code</summary> |
|
|
|
```python |
|
import base64 |
|
from io import BytesIO |
|
import torch |
|
from datasets import load_dataset |
|
from transformers import AutoProcessor, Gemma3ForConditionalGeneration |
|
from llmcompressor.modifiers.quantization import GPTQModifier |
|
from llmcompressor.transformers import oneshot |
|
|
|
|
|
# Load model. |
|
model_id = "google/gemma-3-4b-it" |
|
model = Gemma3ForConditionalGeneration.from_pretrained( |
|
model_id, |
|
device_map="auto", |
|
torch_dtype="auto", |
|
) |
|
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) |
|
|
|
# Oneshot arguments |
|
DATASET_ID = "neuralmagic/calibration" |
|
DATASET_SPLIT = {"LLM": "train[:512]"} |
|
NUM_CALIBRATION_SAMPLES = 512 |
|
MAX_SEQUENCE_LENGTH = 2048 |
|
|
|
# Load dataset and preprocess. |
|
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) |
|
ds = ds.shuffle(seed=42) |
|
|
|
dampening_frac=0.05 |
|
|
|
def data_collator(batch): |
|
assert len(batch) == 1, "Only batch size of 1 is supported for calibration" |
|
item = batch[0] |
|
collated = {} |
|
import torch |
|
|
|
|
|
for key, value in item.items(): |
|
if isinstance(value, torch.Tensor): |
|
collated[key] = value.unsqueeze(0) |
|
elif isinstance(value, list) and isinstance(value[0][0], int): |
|
# Handle tokenized inputs like input_ids, attention_mask |
|
collated[key] = torch.tensor(value) |
|
elif isinstance(value, list) and isinstance(value[0][0], float): |
|
# Handle possible float sequences |
|
collated[key] = torch.tensor(value) |
|
elif isinstance(value, list) and isinstance(value[0][0], torch.Tensor): |
|
# Handle batched image data (e.g., pixel_values as [C, H, W]) |
|
collated[key] = torch.stack(value) # -> [1, C, H, W] |
|
elif isinstance(value, torch.Tensor): |
|
collated[key] = value |
|
else: |
|
print(f"[WARN] Unrecognized type in collator for key={key}, type={type(value)}") |
|
|
|
return collated |
|
|
|
|
|
|
|
# Recipe |
|
recipe = [ |
|
GPTQModifier( |
|
targets="Linear", |
|
ignore=["re:.*lm_head.*", "re:.*embed_tokens.*", "re:vision_tower.*", "re:multi_modal_projector.*"], |
|
sequential_update=True, |
|
sequential_targets=["Gemma3DecoderLayer"], |
|
dampening_frac=dampening_frac, |
|
) |
|
] |
|
|
|
SAVE_DIR=f"{model_id.split('/')[1]}-quantized.w4a16" |
|
|
|
# Perform oneshot |
|
oneshot( |
|
model=model, |
|
tokenizer=model_id, |
|
dataset=ds, |
|
recipe=recipe, |
|
max_seq_length=MAX_SEQUENCE_LENGTH, |
|
num_calibration_samples=NUM_CALIBRATION_SAMPLES, |
|
trust_remote_code_model=True, |
|
data_collator=data_collator, |
|
output_dir=SAVE_DIR |
|
) |
|
``` |
|
</details> |
|
|
|
## Evaluation |
|
|
|
The model was evaluated using [lm_evaluation_harness](https://github.com/neuralmagic/lm-evaluation-harness) for OpenLLM v1 text benchmark. The evaluations were conducted using the following commands: |
|
|
|
<details> |
|
<summary>Evaluation Commands</summary> |
|
|
|
### OpenLLM v1 |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="<model_name>",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=<n>,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True,enforce_eager=True \ |
|
--tasks openllm \ |
|
--batch_size auto |
|
``` |
|
</details> |
|
|
|
|
|
### Accuracy |
|
|
|
<table> |
|
<thead> |
|
<tr> |
|
<th>Category</th> |
|
<th>Metric</th> |
|
<th>google/gemma-3-4b-it</th> |
|
<th>RedHatAI/gemma-3-4b-it-quantized.w4a16</th> |
|
<th>Recovery (%)</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td rowspan="7"><b>OpenLLM V1</b></td> |
|
<td>ARC Challenge</td> |
|
<td>56.57%</td> |
|
<td>56.57%</td> |
|
<td>100.00%</td> |
|
</tr> |
|
<tr> |
|
<td>GSM8K</td> |
|
<td>76.12%</td> |
|
<td>72.33%</td> |
|
<td>95.02%</td> |
|
</tr> |
|
<tr> |
|
<td>Hellaswag</td> |
|
<td>74.96%</td> |
|
<td>73.35%</td> |
|
<td>97.86%</td> |
|
</tr> |
|
<tr> |
|
<td>MMLU</td> |
|
<td>58.38%</td> |
|
<td>56.33%</td> |
|
<td>96.49%</td> |
|
</tr> |
|
<tr> |
|
<td>Truthfulqa (mc2)</td> |
|
<td>51.87%</td> |
|
<td>50.81%</td> |
|
<td>97.96%</td> |
|
</tr> |
|
<tr> |
|
<td>Winogrande</td> |
|
<td>70.32%</td> |
|
<td>68.82%</td> |
|
<td>97.87%%</td> |
|
</tr> |
|
<tr> |
|
<td><b>Average Score</b></td> |
|
<td><b>64.70%</b></td> |
|
<td><b>63.04%</b></td> |
|
<td><b>97.42%</b></td> |
|
</tr> |
|
<tr> |
|
<td rowspan="3"><b>Vision Evals</b></td> |
|
<td>MMMU (val)</td> |
|
<td>39.89%</td> |
|
<td>40.11%</td> |
|
<td>100.55%</td> |
|
</tr> |
|
<tr> |
|
<td>ChartQA</td> |
|
<td>50.76%</td> |
|
<td>49.32%</td> |
|
<td>97.16%</td> |
|
</tr> |
|
<tr> |
|
<td><b>Average Score</b></td> |
|
<td><b>45.33%</b></td> |
|
<td><b>44.72%</b></td> |
|
<td><b>98.86%</b></td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|