File size: 6,824 Bytes
4962ff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6adb5f
 
 
 
8fb314d
a6adb5f
 
 
 
4962ff6
a6adb5f
 
 
 
 
 
 
 
 
 
 
 
4962ff6
a6adb5f
 
 
 
4962ff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
726f6ae
 
 
 
4962ff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fb314d
4962ff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33f7ee1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4962ff6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
---
tags:
- vllm
- vision
- w4a16
license: gemma
base_model: google/gemma-3-4b-it
library_name: transformers
---

# gemma-3-4b-it-quantized.w4a16

## Model Overview
- **Model Architecture:** google/gemma-3-4b-it
  - **Input:** Vision-Text
  - **Output:** Text
- **Model Optimizations:**
  - **Weight quantization:** INT4
  - **Activation quantization:** FP16
- **Release Date:** 6/4/2025
- **Version:** 1.0
- **Model Developers:** RedHatAI

Quantized version of [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it).

### Model Optimizations

This model was obtained by quantizing the weights of [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it) to INT4 data type, ready for inference with vLLM >= 0.8.0.

## Deployment

### Use with vLLM

This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.

```python
from vllm import LLM, SamplingParams
from vllm.assets.image import ImageAsset
from transformers import AutoProcessor

# Define model name once
model_name = "RedHatAI/gemma-3-4b-it-quantized.w4a16"

# Load image and processor
image = ImageAsset("cherry_blossom").pil_image.convert("RGB")
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)

# Build multimodal prompt
chat = [
    {"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "What is the content of this image?"}]},
    {"role": "assistant", "content": []}
]
prompt = processor.apply_chat_template(chat, add_generation_prompt=True)

# Initialize model
llm = LLM(model=model_name, trust_remote_code=True)

# Run inference
inputs = {"prompt": prompt, "multi_modal_data": {"image": [image]}}
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))

# Display result
print("RESPONSE:", outputs[0].outputs[0].text)

```

vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.

## Creation

This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below:

<details>
  <summary>Model Creation Code</summary>
  
```python
import base64
from io import BytesIO
import torch
from datasets import load_dataset
from transformers import AutoProcessor, Gemma3ForConditionalGeneration
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.transformers import oneshot


# Load model.
model_id = "google/gemma-3-4b-it"
model = Gemma3ForConditionalGeneration.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype="auto",
)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)

# Oneshot arguments
DATASET_ID = "neuralmagic/calibration"
DATASET_SPLIT = {"LLM": "train[:512]"}
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 2048

# Load dataset and preprocess.
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42)

dampening_frac=0.05

def data_collator(batch):
    assert len(batch) == 1, "Only batch size of 1 is supported for calibration"
    item = batch[0]
    collated = {}
    import torch


    for key, value in item.items():
        if isinstance(value, torch.Tensor):
            collated[key] = value.unsqueeze(0)
        elif isinstance(value, list) and isinstance(value[0][0], int):
            # Handle tokenized inputs like input_ids, attention_mask
            collated[key] = torch.tensor(value)
        elif isinstance(value, list) and isinstance(value[0][0], float):
            # Handle possible float sequences
            collated[key] = torch.tensor(value)
        elif isinstance(value, list) and isinstance(value[0][0], torch.Tensor):
            # Handle batched image data (e.g., pixel_values as [C, H, W])
            collated[key] = torch.stack(value)  # -> [1, C, H, W]
        elif isinstance(value, torch.Tensor):
            collated[key] = value
        else:
            print(f"[WARN] Unrecognized type in collator for key={key}, type={type(value)}")
    
    return collated
   


# Recipe
recipe = [
    GPTQModifier(
        targets="Linear",
        ignore=["re:.*lm_head.*", "re:.*embed_tokens.*", "re:vision_tower.*", "re:multi_modal_projector.*"],
        sequential_update=True,
        sequential_targets=["Gemma3DecoderLayer"],
        dampening_frac=dampening_frac,
    )
]

SAVE_DIR=f"{model_id.split('/')[1]}-quantized.w4a16"

# Perform oneshot
oneshot(
    model=model,
    tokenizer=model_id,
    dataset=ds,
    recipe=recipe,
    max_seq_length=MAX_SEQUENCE_LENGTH,
    num_calibration_samples=NUM_CALIBRATION_SAMPLES,
    trust_remote_code_model=True,
    data_collator=data_collator,
    output_dir=SAVE_DIR
)
```
</details>

## Evaluation

The model was evaluated using [lm_evaluation_harness](https://github.com/neuralmagic/lm-evaluation-harness) for OpenLLM v1 text benchmark. The evaluations were conducted using the following commands:

<details>
<summary>Evaluation Commands</summary>

### OpenLLM v1
```
lm_eval \
  --model vllm \
  --model_args pretrained="<model_name>",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=<n>,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True,enforce_eager=True \
  --tasks openllm \
  --batch_size auto
```
</details>


### Accuracy

<table>
  <thead>
    <tr>
      <th>Category</th>
      <th>Metric</th>
      <th>google/gemma-3-4b-it</th>
      <th>RedHatAI/gemma-3-4b-it-quantized.w4a16</th>
      <th>Recovery (%)</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td rowspan="7"><b>OpenLLM V1</b></td>
      <td>ARC Challenge</td>
      <td>56.57%</td>
      <td>56.57%</td>
      <td>100.00%</td>
    </tr>
    <tr>
      <td>GSM8K</td>
      <td>76.12%</td>
      <td>72.33%</td>
      <td>95.02%</td>
    </tr>
    <tr>
      <td>Hellaswag</td>
      <td>74.96%</td>
      <td>73.35%</td>
      <td>97.86%</td>
    </tr>
    <tr>
      <td>MMLU</td>
      <td>58.38%</td>
      <td>56.33%</td>
      <td>96.49%</td>
    </tr>
    <tr>
      <td>Truthfulqa (mc2)</td>
      <td>51.87%</td>
      <td>50.81%</td>
      <td>97.96%</td>
    </tr>
    <tr>
      <td>Winogrande</td>
      <td>70.32%</td>
      <td>68.82%</td>
      <td>97.87%%</td>
    </tr>
    <tr>
      <td><b>Average Score</b></td>
      <td><b>64.70%</b></td>
      <td><b>63.04%</b></td>
      <td><b>97.42%</b></td>
    </tr>
    <tr>
      <td rowspan="3"><b>Vision Evals</b></td>
      <td>MMMU (val)</td>
      <td>39.89%</td>	
      <td>40.11%</td>
      <td>100.55%</td>
    </tr>
    <tr>
      <td>ChartQA</td>
      <td>50.76%</td>
      <td>49.32%</td>
      <td>97.16%</td>
    </tr>
    <tr>
      <td><b>Average Score</b></td>
      <td><b>45.33%</b></td>
      <td><b>44.72%</b></td>
      <td><b>98.86%</b></td>
    </tr>
  </tbody>
</table>