| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						library_name: transformers | 
					
					
						
						| 
							 | 
						license: apache-2.0 | 
					
					
						
						| 
							 | 
						pipeline_tag: text-generation | 
					
					
						
						| 
							 | 
						base_model: | 
					
					
						
						| 
							 | 
						- Qwen/Qwen3-1.7B | 
					
					
						
						| 
							 | 
						tags: | 
					
					
						
						| 
							 | 
						- neuralmagic | 
					
					
						
						| 
							 | 
						- redhat | 
					
					
						
						| 
							 | 
						- llmcompressor | 
					
					
						
						| 
							 | 
						- quantized | 
					
					
						
						| 
							 | 
						- FP8 | 
					
					
						
						| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						# Qwen3-1.7B-FP8-dynamic | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Model Overview | 
					
					
						
						| 
							 | 
						- **Model Architecture:** Qwen3ForCausalLM | 
					
					
						
						| 
							 | 
						  - **Input:** Text | 
					
					
						
						| 
							 | 
						  - **Output:** Text | 
					
					
						
						| 
							 | 
						- **Model Optimizations:** | 
					
					
						
						| 
							 | 
						  - **Activation quantization:** FP8 | 
					
					
						
						| 
							 | 
						  - **Weight quantization:** FP8 | 
					
					
						
						| 
							 | 
						- **Intended Use Cases:** | 
					
					
						
						| 
							 | 
						  - Reasoning. | 
					
					
						
						| 
							 | 
						  - Function calling. | 
					
					
						
						| 
							 | 
						  - Subject matter experts via fine-tuning. | 
					
					
						
						| 
							 | 
						  - Multilingual instruction following. | 
					
					
						
						| 
							 | 
						  - Translation. | 
					
					
						
						| 
							 | 
						- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). | 
					
					
						
						| 
							 | 
						- **Release Date:** 05/02/2025 | 
					
					
						
						| 
							 | 
						- **Version:** 1.0 | 
					
					
						
						| 
							 | 
						- **Model Developers:** RedHat (Neural Magic) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						### Model Optimizations | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						This model was obtained by quantizing activations and weights of [Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B) to FP8 data type. | 
					
					
						
						| 
							 | 
						This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x). | 
					
					
						
						| 
							 | 
						Weight quantization also reduces disk size requirements by approximately 50%. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						Only weights and activations of the linear operators within transformers blocks are quantized. | 
					
					
						
						| 
							 | 
						Weights are quantized with a symmetric static per-channel scheme, whereas activations are quantized with a symmetric dynamic per-token scheme. | 
					
					
						
						| 
							 | 
						The [llm-compressor](https://github.com/vllm-project/llm-compressor) library is used for quantization. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Deployment | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						```python | 
					
					
						
						| 
							 | 
						from vllm import LLM, SamplingParams | 
					
					
						
						| 
							 | 
						from transformers import AutoTokenizer | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						model_id = "RedHatAI/Qwen3-1.7B-FP8-dynamic" | 
					
					
						
						| 
							 | 
						number_gpus = 1 | 
					
					
						
						| 
							 | 
						sampling_params = SamplingParams(temperature=0.6, top_p=0.95, top_k=20, min_p=0, max_tokens=256) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						messages = [ | 
					
					
						
						| 
							 | 
						    {"role": "user", "content": prompt} | 
					
					
						
						| 
							 | 
						] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						tokenizer = AutoTokenizer.from_pretrained(model_id) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						messages = [{"role": "user", "content": "Give me a short introduction to large language model."}] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						llm = LLM(model=model_id, tensor_parallel_size=number_gpus) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						outputs = llm.generate(prompts, sampling_params) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						generated_text = outputs[0].outputs[0].text | 
					
					
						
						| 
							 | 
						print(generated_text) | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Creation | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						<details> | 
					
					
						
						| 
							 | 
						  <summary>Creation details</summary> | 
					
					
						
						| 
							 | 
						  This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.  | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						  ```python | 
					
					
						
						| 
							 | 
						  from llmcompressor.modifiers.quantization import QuantizationModifier | 
					
					
						
						| 
							 | 
						  from llmcompressor.transformers import oneshot | 
					
					
						
						| 
							 | 
						  from transformers import AutoModelForCausalLM, AutoTokenizer | 
					
					
						
						| 
							 | 
						   | 
					
					
						
						| 
							 | 
						  # Load model | 
					
					
						
						| 
							 | 
						  model_stub = "Qwen/Qwen3-1.7B" | 
					
					
						
						| 
							 | 
						  model_name = model_stub.split("/")[-1] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						  model = AutoModelForCausalLM.from_pretrained(model_stub) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						  tokenizer = AutoTokenizer.from_pretrained(model_stub) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						  # Configure the quantization algorithm and scheme | 
					
					
						
						| 
							 | 
						  recipe = QuantizationModifier( | 
					
					
						
						| 
							 | 
						      ignore=["lm_head"], | 
					
					
						
						| 
							 | 
						      targets="Linear", | 
					
					
						
						| 
							 | 
						      scheme="FP8_dynamic", | 
					
					
						
						| 
							 | 
						  ) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						  # Apply quantization | 
					
					
						
						| 
							 | 
						  oneshot( | 
					
					
						
						| 
							 | 
						      model=model, | 
					
					
						
						| 
							 | 
						      recipe=recipe, | 
					
					
						
						| 
							 | 
						  ) | 
					
					
						
						| 
							 | 
						   | 
					
					
						
						| 
							 | 
						  # Save to disk in compressed-tensors format | 
					
					
						
						| 
							 | 
						  save_path = model_name + "-FP8-dynamic" | 
					
					
						
						| 
							 | 
						  model.save_pretrained(save_path) | 
					
					
						
						| 
							 | 
						  tokenizer.save_pretrained(save_path) | 
					
					
						
						| 
							 | 
						  print(f"Model and tokenizer saved to: {save_path}") | 
					
					
						
						| 
							 | 
						  ``` | 
					
					
						
						| 
							 | 
						</details> | 
					
					
						
						| 
							 | 
						  | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Evaluation | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						The model was evaluated on the OpenLLM leaderboard tasks (versions 1 and 2), using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness), and on reasoning tasks using [lighteval](https://github.com/neuralmagic/lighteval/tree/reasoning). | 
					
					
						
						| 
							 | 
						[vLLM](https://docs.vllm.ai/en/stable/) was used for all evaluations. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						<details> | 
					
					
						
						| 
							 | 
						  <summary>Evaluation details</summary> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						  **lm-evaluation-harness** | 
					
					
						
						| 
							 | 
						  ``` | 
					
					
						
						| 
							 | 
						  lm_eval \ | 
					
					
						
						| 
							 | 
						    --model vllm \ | 
					
					
						
						| 
							 | 
						    --model_args pretrained="RedHatAI/Qwen3-1.7B-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=1 \ | 
					
					
						
						| 
							 | 
						    --tasks openllm \ | 
					
					
						
						| 
							 | 
						    --apply_chat_template\ | 
					
					
						
						| 
							 | 
						    --fewshot_as_multiturn \ | 
					
					
						
						| 
							 | 
						    --batch_size auto | 
					
					
						
						| 
							 | 
						  ``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						  ``` | 
					
					
						
						| 
							 | 
						  lm_eval \ | 
					
					
						
						| 
							 | 
						    --model vllm \ | 
					
					
						
						| 
							 | 
						    --model_args pretrained="RedHatAI/Qwen3-1.7B-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=1 \ | 
					
					
						
						| 
							 | 
						    --tasks mgsm \ | 
					
					
						
						| 
							 | 
						    --apply_chat_template\ | 
					
					
						
						| 
							 | 
						    --batch_size auto | 
					
					
						
						| 
							 | 
						  ``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						  ``` | 
					
					
						
						| 
							 | 
						  lm_eval \ | 
					
					
						
						| 
							 | 
						    --model vllm \ | 
					
					
						
						| 
							 | 
						    --model_args pretrained="RedHatAI/Qwen3-1.7B-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=16384,enable_chunk_prefill=True,tensor_parallel_size=1 \ | 
					
					
						
						| 
							 | 
						    --tasks leaderboard \ | 
					
					
						
						| 
							 | 
						    --apply_chat_template\ | 
					
					
						
						| 
							 | 
						    --fewshot_as_multiturn \ | 
					
					
						
						| 
							 | 
						    --batch_size auto | 
					
					
						
						| 
							 | 
						  ``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						  **lighteval** | 
					
					
						
						| 
							 | 
						   | 
					
					
						
						| 
							 | 
						  lighteval_model_arguments.yaml | 
					
					
						
						| 
							 | 
						  ```yaml  | 
					
					
						
						| 
							 | 
						  model_parameters: | 
					
					
						
						| 
							 | 
						    model_name: RedHatAI/Qwen3-1.7B-FP8-dynamic | 
					
					
						
						| 
							 | 
						    dtype: auto | 
					
					
						
						| 
							 | 
						    gpu_memory_utilization: 0.9 | 
					
					
						
						| 
							 | 
						    max_model_length: 40960 | 
					
					
						
						| 
							 | 
						    generation_parameters: | 
					
					
						
						| 
							 | 
						      temperature: 0.6 | 
					
					
						
						| 
							 | 
						      top_k: 20 | 
					
					
						
						| 
							 | 
						      min_p: 0.0 | 
					
					
						
						| 
							 | 
						      top_p: 0.95 | 
					
					
						
						| 
							 | 
						      max_new_tokens: 32768 | 
					
					
						
						| 
							 | 
						  ``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						  ``` | 
					
					
						
						| 
							 | 
						  lighteval vllm \ | 
					
					
						
						| 
							 | 
						    --model_args lighteval_model_arguments.yaml \ | 
					
					
						
						| 
							 | 
						    --tasks lighteval|aime24|0|0 \ | 
					
					
						
						| 
							 | 
						    --use_chat_template = true | 
					
					
						
						| 
							 | 
						  ``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						  ``` | 
					
					
						
						| 
							 | 
						  lighteval vllm \ | 
					
					
						
						| 
							 | 
						    --model_args lighteval_model_arguments.yaml \ | 
					
					
						
						| 
							 | 
						    --tasks lighteval|aime25|0|0 \ | 
					
					
						
						| 
							 | 
						    --use_chat_template = true | 
					
					
						
						| 
							 | 
						  ``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						  ``` | 
					
					
						
						| 
							 | 
						  lighteval vllm \ | 
					
					
						
						| 
							 | 
						    --model_args lighteval_model_arguments.yaml \ | 
					
					
						
						| 
							 | 
						    --tasks lighteval|math_500|0|0 \ | 
					
					
						
						| 
							 | 
						    --use_chat_template = true | 
					
					
						
						| 
							 | 
						  ``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						  ``` | 
					
					
						
						| 
							 | 
						  lighteval vllm \ | 
					
					
						
						| 
							 | 
						    --model_args lighteval_model_arguments.yaml \ | 
					
					
						
						| 
							 | 
						    --tasks lighteval|gpqa:diamond|0|0 \ | 
					
					
						
						| 
							 | 
						    --use_chat_template = true | 
					
					
						
						| 
							 | 
						  ``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						  ``` | 
					
					
						
						| 
							 | 
						  lighteval vllm \ | 
					
					
						
						| 
							 | 
						    --model_args lighteval_model_arguments.yaml \ | 
					
					
						
						| 
							 | 
						    --tasks extended|lcb:codegeneration \ | 
					
					
						
						| 
							 | 
						    --use_chat_template = true | 
					
					
						
						| 
							 | 
						  ``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						</details> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						### Accuracy | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						<table> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <th>Category | 
					
					
						
						| 
							 | 
						   </th> | 
					
					
						
						| 
							 | 
						   <th>Benchmark | 
					
					
						
						| 
							 | 
						   </th> | 
					
					
						
						| 
							 | 
						   <th>Qwen3-1.7B | 
					
					
						
						| 
							 | 
						   </th> | 
					
					
						
						| 
							 | 
						   <th>Qwen3-1.7B-FP8-dynamic<br>(this model) | 
					
					
						
						| 
							 | 
						   </th> | 
					
					
						
						| 
							 | 
						   <th>Recovery | 
					
					
						
						| 
							 | 
						   </th> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <td rowspan="7" ><strong>OpenLLM v1</strong> | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>MMLU (5-shot) | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>56.82 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>56.02 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>98.6% | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <td>ARC Challenge (25-shot) | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>43.00 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>42.83 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>99.6% | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <td>GSM-8K (5-shot, strict-match) | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>43.67 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>41.47 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>95.0% | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <td>Hellaswag (10-shot) | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>48.08 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>48.11 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>100.1% | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <td>Winogrande (5-shot) | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>58.01 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>57.70 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>99.5% | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <td>TruthfulQA (0-shot, mc2) | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>49.35 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>48.60 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>98.5% | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <td><strong>Average</strong> | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td><strong>49.82</strong> | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td><strong>49.12</strong> | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td><strong>98.6%</strong> | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <td rowspan="7" ><strong>OpenLLM v2</strong> | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>MMLU-Pro (5-shot) | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>23.45 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>21.38 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>91.1% | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <td>IFEval (0-shot) | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>71.08 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>70.93 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>99.8% | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <td>BBH (3-shot) | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>7.13 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>5.41 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>--- | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <td>Math-lvl-5 (4-shot) | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>35.91 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>34.71 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>96.7% | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <td>GPQA (0-shot) | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>0.11 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>0.00 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>--- | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <td>MuSR (0-shot) | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>7.97 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>7.18 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>--- | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <td><strong>Average</strong> | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td><strong>24.28</strong> | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td><strong>23.27</strong> | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td><strong>95.8%</strong> | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <td><strong>Multilingual</strong> | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>MGSM (0-shot) | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>22.10 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td> | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td> | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <td rowspan="6" ><strong>Reasoning<br>(generation)</strong> | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>AIME 2024 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>43.96 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>40.10 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>91.2% | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <td>AIME 2025 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>32.29 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>32.29 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>100.0% | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <td>GPQA diamond | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>38.38 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>38.89 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>101.3% | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <td>Math-lvl-5 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>89.00 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>88.80 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>99.8% | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						  <tr> | 
					
					
						
						| 
							 | 
						   <td>LiveCodeBench | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td>33.44 | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td> | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						   <td> | 
					
					
						
						| 
							 | 
						   </td> | 
					
					
						
						| 
							 | 
						  </tr> | 
					
					
						
						| 
							 | 
						</table> |