File size: 5,419 Bytes
3d4d6c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
---
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
base_model:
- Qwen/Qwen3-1.7B
tags:
- neuralmagic
- redhat
- llmcompressor
- quantized
- FP8
---

# Qwen3-1.7B-FP8-dynamic

## Model Overview
- **Model Architecture:** Qwen3ForCausalLM
  - **Input:** Text
  - **Output:** Text
- **Model Optimizations:**
  - **Activation quantization:** FP8
  - **Weight quantization:** FP8
- **Intended Use Cases:**
  - Reasoning.
  - Function calling.
  - Subject matter experts via fine-tuning.
  - Multilingual instruction following.
  - Translation.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws).
- **Release Date:** 05/02/2025
- **Version:** 1.0
- **Model Developers:** RedHat (Neural Magic)

### Model Optimizations

This model was obtained by quantizing activations and weights of [Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B) to FP8 data type.
This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x).
Weight quantization also reduces disk size requirements by approximately 50%.

Only weights and activations of the linear operators within transformers blocks are quantized.
Weights are quantized with a symmetric static per-channel scheme, whereas activations are quantized with a symmetric dynamic per-token scheme.
The [llm-compressor](https://github.com/vllm-project/llm-compressor) library is used for quantization.


## Deployment

This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.

```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

model_id = "RedHatAI/Qwen3-1.7B-FP8-dynamic"
number_gpus = 1
sampling_params = SamplingParams(temperature=0.6, top_p=0.95, top_k=20, min_p=0, max_tokens=256)

messages = [
    {"role": "user", "content": prompt}
]

tokenizer = AutoTokenizer.from_pretrained(model_id)

messages = [{"role": "user", "content": "Give me a short introduction to large language model."}]

prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)

llm = LLM(model=model_id, tensor_parallel_size=number_gpus)

outputs = llm.generate(prompts, sampling_params)

generated_text = outputs[0].outputs[0].text
print(generated_text)
```

vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.

## Creation

<details>
  <summary>Creation details</summary>
  This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. 


  ```python
  from llmcompressor.modifiers.quantization import QuantizationModifier
  from llmcompressor.transformers import oneshot
  from transformers import AutoModelForCausalLM, AutoTokenizer
  
  # Load model
  model_stub = "Qwen/Qwen3-1.7B"
  model_name = model_stub.split("/")[-1]

  model = AutoModelForCausalLM.from_pretrained(model_stub)

  tokenizer = AutoTokenizer.from_pretrained(model_stub)

  # Configure the quantization algorithm and scheme
  recipe = QuantizationModifier(
      ignore=["lm_head"],
      targets="Linear",
      scheme="FP8_dynamic",
  )

  # Apply quantization
  oneshot(
      model=model,
      recipe=recipe,
  )
  
  # Save to disk in compressed-tensors format
  save_path = model_name + "-FP8-dynamic"
  model.save_pretrained(save_path)
  tokenizer.save_pretrained(save_path)
  print(f"Model and tokenizer saved to: {save_path}")
  ```
</details>
 


## Evaluation

The model was evaluated on the OpenLLM leaderboard tasks (version 1), using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) and [vLLM](https://docs.vllm.ai/en/stable/).

<details>
  <summary>Evaluation details</summary>

  ```
  lm_eval \
    --model vllm \
    --model_args pretrained="RedHatAI/Qwen3-1.7B-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
    --tasks openllm \
    --apply_chat_template\
    --fewshot_as_multiturn \
    --batch_size auto
  ```
</details>

### Accuracy

<table>
  <tr>
   <th>Category
   </th>
   <th>Benchmark
   </th>
   <th>Qwen3-1.7B
   </th>
   <th>Qwen3-1.7B-FP8-dynamic<br>(this model)
   </th>
   <th>Recovery
   </th>
  </tr>
  <tr>
   <td rowspan="7" ><strong>OpenLLM v1</strong>
   </td>
   <td>MMLU (5-shot)
   </td>
   <td>56.82
   </td>
   <td>56.02
   </td>
   <td>98.6%
   </td>
  </tr>
  <tr>
   <td>ARC Challenge (25-shot)
   </td>
   <td>43.00
   </td>
   <td>42.83
   </td>
   <td>99.6%
   </td>
  </tr>
  <tr>
   <td>GSM-8K (5-shot, strict-match)
   </td>
   <td>43.67
   </td>
   <td>41.47
   </td>
   <td>95.0%
   </td>
  </tr>
  <tr>
   <td>Hellaswag (10-shot)
   </td>
   <td>48.08
   </td>
   <td>48.11
   </td>
   <td>100.1%
   </td>
  </tr>
  <tr>
   <td>Winogrande (5-shot)
   </td>
   <td>58.01
   </td>
   <td>57.70
   </td>
   <td>99.5%
   </td>
  </tr>
  <tr>
   <td>TruthfulQA (0-shot, mc2)
   </td>
   <td>49.35
   </td>
   <td>48.60
   </td>
   <td>98.5%
   </td>
  </tr>
  <tr>
   <td><strong>Average</strong>
   </td>
   <td><strong>49.82</strong>
   </td>
   <td><strong>49.12</strong>
   </td>
   <td><strong>98.6%</strong>
   </td>
  </tr>
</table>