File size: 5,419 Bytes
3d4d6c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
---
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
base_model:
- Qwen/Qwen3-1.7B
tags:
- neuralmagic
- redhat
- llmcompressor
- quantized
- FP8
---
# Qwen3-1.7B-FP8-dynamic
## Model Overview
- **Model Architecture:** Qwen3ForCausalLM
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Activation quantization:** FP8
- **Weight quantization:** FP8
- **Intended Use Cases:**
- Reasoning.
- Function calling.
- Subject matter experts via fine-tuning.
- Multilingual instruction following.
- Translation.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws).
- **Release Date:** 05/02/2025
- **Version:** 1.0
- **Model Developers:** RedHat (Neural Magic)
### Model Optimizations
This model was obtained by quantizing activations and weights of [Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B) to FP8 data type.
This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x).
Weight quantization also reduces disk size requirements by approximately 50%.
Only weights and activations of the linear operators within transformers blocks are quantized.
Weights are quantized with a symmetric static per-channel scheme, whereas activations are quantized with a symmetric dynamic per-token scheme.
The [llm-compressor](https://github.com/vllm-project/llm-compressor) library is used for quantization.
## Deployment
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "RedHatAI/Qwen3-1.7B-FP8-dynamic"
number_gpus = 1
sampling_params = SamplingParams(temperature=0.6, top_p=0.95, top_k=20, min_p=0, max_tokens=256)
messages = [
{"role": "user", "content": prompt}
]
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [{"role": "user", "content": "Give me a short introduction to large language model."}]
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
<details>
<summary>Creation details</summary>
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
```python
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model
model_stub = "Qwen/Qwen3-1.7B"
model_name = model_stub.split("/")[-1]
model = AutoModelForCausalLM.from_pretrained(model_stub)
tokenizer = AutoTokenizer.from_pretrained(model_stub)
# Configure the quantization algorithm and scheme
recipe = QuantizationModifier(
ignore=["lm_head"],
targets="Linear",
scheme="FP8_dynamic",
)
# Apply quantization
oneshot(
model=model,
recipe=recipe,
)
# Save to disk in compressed-tensors format
save_path = model_name + "-FP8-dynamic"
model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")
```
</details>
## Evaluation
The model was evaluated on the OpenLLM leaderboard tasks (version 1), using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) and [vLLM](https://docs.vllm.ai/en/stable/).
<details>
<summary>Evaluation details</summary>
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Qwen3-1.7B-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks openllm \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
```
</details>
### Accuracy
<table>
<tr>
<th>Category
</th>
<th>Benchmark
</th>
<th>Qwen3-1.7B
</th>
<th>Qwen3-1.7B-FP8-dynamic<br>(this model)
</th>
<th>Recovery
</th>
</tr>
<tr>
<td rowspan="7" ><strong>OpenLLM v1</strong>
</td>
<td>MMLU (5-shot)
</td>
<td>56.82
</td>
<td>56.02
</td>
<td>98.6%
</td>
</tr>
<tr>
<td>ARC Challenge (25-shot)
</td>
<td>43.00
</td>
<td>42.83
</td>
<td>99.6%
</td>
</tr>
<tr>
<td>GSM-8K (5-shot, strict-match)
</td>
<td>43.67
</td>
<td>41.47
</td>
<td>95.0%
</td>
</tr>
<tr>
<td>Hellaswag (10-shot)
</td>
<td>48.08
</td>
<td>48.11
</td>
<td>100.1%
</td>
</tr>
<tr>
<td>Winogrande (5-shot)
</td>
<td>58.01
</td>
<td>57.70
</td>
<td>99.5%
</td>
</tr>
<tr>
<td>TruthfulQA (0-shot, mc2)
</td>
<td>49.35
</td>
<td>48.60
</td>
<td>98.5%
</td>
</tr>
<tr>
<td><strong>Average</strong>
</td>
<td><strong>49.82</strong>
</td>
<td><strong>49.12</strong>
</td>
<td><strong>98.6%</strong>
</td>
</tr>
</table> |