File size: 8,928 Bytes
3d4d6c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e776dcc
 
3d4d6c9
 
 
 
e776dcc
3d4d6c9
 
 
e776dcc
3d4d6c9
 
 
 
 
e776dcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d4d6c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e776dcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d4d6c9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
---
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
base_model:
- Qwen/Qwen3-1.7B
tags:
- neuralmagic
- redhat
- llmcompressor
- quantized
- FP8
---

# Qwen3-1.7B-FP8-dynamic

## Model Overview
- **Model Architecture:** Qwen3ForCausalLM
  - **Input:** Text
  - **Output:** Text
- **Model Optimizations:**
  - **Activation quantization:** FP8
  - **Weight quantization:** FP8
- **Intended Use Cases:**
  - Reasoning.
  - Function calling.
  - Subject matter experts via fine-tuning.
  - Multilingual instruction following.
  - Translation.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws).
- **Release Date:** 05/02/2025
- **Version:** 1.0
- **Model Developers:** RedHat (Neural Magic)

### Model Optimizations

This model was obtained by quantizing activations and weights of [Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B) to FP8 data type.
This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x).
Weight quantization also reduces disk size requirements by approximately 50%.

Only weights and activations of the linear operators within transformers blocks are quantized.
Weights are quantized with a symmetric static per-channel scheme, whereas activations are quantized with a symmetric dynamic per-token scheme.
The [llm-compressor](https://github.com/vllm-project/llm-compressor) library is used for quantization.


## Deployment

This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.

```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

model_id = "RedHatAI/Qwen3-1.7B-FP8-dynamic"
number_gpus = 1
sampling_params = SamplingParams(temperature=0.6, top_p=0.95, top_k=20, min_p=0, max_tokens=256)

messages = [
    {"role": "user", "content": prompt}
]

tokenizer = AutoTokenizer.from_pretrained(model_id)

messages = [{"role": "user", "content": "Give me a short introduction to large language model."}]

prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)

llm = LLM(model=model_id, tensor_parallel_size=number_gpus)

outputs = llm.generate(prompts, sampling_params)

generated_text = outputs[0].outputs[0].text
print(generated_text)
```

vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.

## Creation

<details>
  <summary>Creation details</summary>
  This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. 


  ```python
  from llmcompressor.modifiers.quantization import QuantizationModifier
  from llmcompressor.transformers import oneshot
  from transformers import AutoModelForCausalLM, AutoTokenizer
  
  # Load model
  model_stub = "Qwen/Qwen3-1.7B"
  model_name = model_stub.split("/")[-1]

  model = AutoModelForCausalLM.from_pretrained(model_stub)

  tokenizer = AutoTokenizer.from_pretrained(model_stub)

  # Configure the quantization algorithm and scheme
  recipe = QuantizationModifier(
      ignore=["lm_head"],
      targets="Linear",
      scheme="FP8_dynamic",
  )

  # Apply quantization
  oneshot(
      model=model,
      recipe=recipe,
  )
  
  # Save to disk in compressed-tensors format
  save_path = model_name + "-FP8-dynamic"
  model.save_pretrained(save_path)
  tokenizer.save_pretrained(save_path)
  print(f"Model and tokenizer saved to: {save_path}")
  ```
</details>
 


## Evaluation

The model was evaluated on the OpenLLM leaderboard tasks (versions 1 and 2), using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness), and on reasoning tasks using [lighteval](https://github.com/neuralmagic/lighteval/tree/reasoning).
[vLLM](https://docs.vllm.ai/en/stable/) was used for all evaluations.

<details>
  <summary>Evaluation details</summary>

  **lm-evaluation-harness**
  ```
  lm_eval \
    --model vllm \
    --model_args pretrained="RedHatAI/Qwen3-1.7B-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=1 \
    --tasks openllm \
    --apply_chat_template\
    --fewshot_as_multiturn \
    --batch_size auto
  ```

  ```
  lm_eval \
    --model vllm \
    --model_args pretrained="RedHatAI/Qwen3-1.7B-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=1 \
    --tasks mgsm \
    --apply_chat_template\
    --batch_size auto
  ```

  ```
  lm_eval \
    --model vllm \
    --model_args pretrained="RedHatAI/Qwen3-1.7B-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=16384,enable_chunk_prefill=True,tensor_parallel_size=1 \
    --tasks leaderboard \
    --apply_chat_template\
    --fewshot_as_multiturn \
    --batch_size auto
  ```

  **lighteval**
  
  lighteval_model_arguments.yaml
  ```yaml 
  model_parameters:
    model_name: RedHatAI/Qwen3-1.7B-FP8-dynamic
    dtype: auto
    gpu_memory_utilization: 0.9
    max_model_length: 40960
    generation_parameters:
      temperature: 0.6
      top_k: 20
      min_p: 0.0
      top_p: 0.95
      max_new_tokens: 32768
  ```

  ```
  lighteval vllm \
    --model_args lighteval_model_arguments.yaml \
    --tasks lighteval|aime24|0|0 \
    --use_chat_template = true
  ```

  ```
  lighteval vllm \
    --model_args lighteval_model_arguments.yaml \
    --tasks lighteval|aime25|0|0 \
    --use_chat_template = true
  ```

  ```
  lighteval vllm \
    --model_args lighteval_model_arguments.yaml \
    --tasks lighteval|math_500|0|0 \
    --use_chat_template = true
  ```

  ```
  lighteval vllm \
    --model_args lighteval_model_arguments.yaml \
    --tasks lighteval|gpqa:diamond|0|0 \
    --use_chat_template = true
  ```

  ```
  lighteval vllm \
    --model_args lighteval_model_arguments.yaml \
    --tasks extended|lcb:codegeneration \
    --use_chat_template = true
  ```

</details>

### Accuracy

<table>
  <tr>
   <th>Category
   </th>
   <th>Benchmark
   </th>
   <th>Qwen3-1.7B
   </th>
   <th>Qwen3-1.7B-FP8-dynamic<br>(this model)
   </th>
   <th>Recovery
   </th>
  </tr>
  <tr>
   <td rowspan="7" ><strong>OpenLLM v1</strong>
   </td>
   <td>MMLU (5-shot)
   </td>
   <td>56.82
   </td>
   <td>56.02
   </td>
   <td>98.6%
   </td>
  </tr>
  <tr>
   <td>ARC Challenge (25-shot)
   </td>
   <td>43.00
   </td>
   <td>42.83
   </td>
   <td>99.6%
   </td>
  </tr>
  <tr>
   <td>GSM-8K (5-shot, strict-match)
   </td>
   <td>43.67
   </td>
   <td>41.47
   </td>
   <td>95.0%
   </td>
  </tr>
  <tr>
   <td>Hellaswag (10-shot)
   </td>
   <td>48.08
   </td>
   <td>48.11
   </td>
   <td>100.1%
   </td>
  </tr>
  <tr>
   <td>Winogrande (5-shot)
   </td>
   <td>58.01
   </td>
   <td>57.70
   </td>
   <td>99.5%
   </td>
  </tr>
  <tr>
   <td>TruthfulQA (0-shot, mc2)
   </td>
   <td>49.35
   </td>
   <td>48.60
   </td>
   <td>98.5%
   </td>
  </tr>
  <tr>
   <td><strong>Average</strong>
   </td>
   <td><strong>49.82</strong>
   </td>
   <td><strong>49.12</strong>
   </td>
   <td><strong>98.6%</strong>
   </td>
  </tr>
  <tr>
   <td rowspan="7" ><strong>OpenLLM v2</strong>
   </td>
   <td>MMLU-Pro (5-shot)
   </td>
   <td>23.45
   </td>
   <td>21.38
   </td>
   <td>91.1%
   </td>
  </tr>
  <tr>
   <td>IFEval (0-shot)
   </td>
   <td>71.08
   </td>
   <td>70.93
   </td>
   <td>99.8%
   </td>
  </tr>
  <tr>
   <td>BBH (3-shot)
   </td>
   <td>7.13
   </td>
   <td>5.41
   </td>
   <td>---
   </td>
  </tr>
  <tr>
   <td>Math-lvl-5 (4-shot)
   </td>
   <td>35.91
   </td>
   <td>34.71
   </td>
   <td>96.7%
   </td>
  </tr>
  <tr>
   <td>GPQA (0-shot)
   </td>
   <td>0.11
   </td>
   <td>0.00
   </td>
   <td>---
   </td>
  </tr>
  <tr>
   <td>MuSR (0-shot)
   </td>
   <td>7.97
   </td>
   <td>7.18
   </td>
   <td>---
   </td>
  </tr>
  <tr>
   <td><strong>Average</strong>
   </td>
   <td><strong>24.28</strong>
   </td>
   <td><strong>23.27</strong>
   </td>
   <td><strong>95.8%</strong>
   </td>
  </tr>
  <tr>
   <td><strong>Multilingual</strong>
   </td>
   <td>MGSM (0-shot)
   </td>
   <td>22.10
   </td>
   <td>
   </td>
   <td>
   </td>
  </tr>
  <tr>
   <td rowspan="6" ><strong>Reasoning<br>(generation)</strong>
   </td>
   <td>AIME 2024
   </td>
   <td>43.96
   </td>
   <td>40.10
   </td>
   <td>91.2%
   </td>
  </tr>
  <tr>
   <td>AIME 2025
   </td>
   <td>32.29
   </td>
   <td>32.29
   </td>
   <td>100.0%
   </td>
  </tr>
  <tr>
   <td>GPQA diamond
   </td>
   <td>38.38
   </td>
   <td>38.89
   </td>
   <td>101.3%
   </td>
  </tr>
  <tr>
   <td>Math-lvl-5
   </td>
   <td>89.00
   </td>
   <td>88.80
   </td>
   <td>99.8%
   </td>
  </tr>
  <tr>
   <td>LiveCodeBench
   </td>
   <td>33.44
   </td>
   <td>
   </td>
   <td>
   </td>
  </tr>
</table>