nm-research's picture
Create README.md
2e50ac3 verified
---
tags:
- fp4
- vllm
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
pipeline_tag: text-generation
license: llama3.1
base_model: meta-llama/Meta-Llama-3.1-70B-Instruct
---
# Meta-Llama-3.1-70B-Instruct-NVFP4
## Model Overview
- **Model Architecture:** Meta-Llama-3.1
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** FP4
- **Activation quantization:** FP4
- **Intended Use Cases:** Intended for commercial and research use in multiple languages. Similarly to [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct), this models is intended for assistant-like chat.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
- **Release Date:** 6/25/2025
- **Version:** 1.0
- **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
- **Model Developers:** RedHatAI
This model is a quantized version of [Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct).
It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model.
### Model Optimizations
This model was obtained by quantizing the weights and activations of [Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct) to FP4 data type, ready for inference with vLLM>=0.9.1
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 25%.
Only the weights and activations of the linear operators within transformers blocks are quantized using [LLM Compressor](https://github.com/vllm-project/llm-compressor).
## Deployment
### Use with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4"
number_gpus = 2
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
This model was created by applying [LLM Compressor with calibration samples from UltraChat](https://github.com/vllm-project/llm-compressor/blob/main/examples/quantization_w4a4_fp4/llama3_example.py), as presented in the code snipet below.
```python
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.utils import dispatch_for_generation
MODEL_ID = "meta-llama/Meta-Llama-3-8B-Instruct"
# Load model.
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
DATASET_ID = "HuggingFaceH4/ultrachat_200k"
DATASET_SPLIT = "train_sft"
# Select number of samples. 512 samples is a good place to start.
# Increasing the number of samples can improve accuracy.
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 2048
# Load dataset and preprocess.
ds = load_dataset(DATASET_ID, split=f"{DATASET_SPLIT}[:{NUM_CALIBRATION_SAMPLES}]")
ds = ds.shuffle(seed=42)
def preprocess(example):
return {
"text": tokenizer.apply_chat_template(
example["messages"],
tokenize=False,
)
}
ds = ds.map(preprocess)
# Tokenize inputs.
def tokenize(sample):
return tokenizer(
sample["text"],
padding=False,
max_length=MAX_SEQUENCE_LENGTH,
truncation=True,
add_special_tokens=False,
)
ds = ds.map(tokenize, remove_columns=ds.column_names)
# Configure the quantization algorithm and scheme.
# In this case, we:
# * quantize the weights to fp4 with per group 16 via ptq
# * calibrate a global_scale for activations, which will be used to
# quantize activations to fp4 on the fly
recipe = QuantizationModifier(targets="Linear", scheme="NVFP4", ignore=["lm_head"])
# Save to disk in compressed-tensors format.
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-NVFP4"
# Apply quantization.
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
output_dir=SAVE_DIR,
)
print("\n\n")
print("========== SAMPLE GENERATION ==============")
dispatch_for_generation(model)
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_new_tokens=100)
print(tokenizer.decode(output[0]))
print("==========================================\n\n")
model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)
```
## Evaluation
This model was evaluated on the well-known OpenLLM v1, OpenLLM v2, HumanEval, and HumanEval_64 benchmarks. All evaluations were conducted using [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness).
### Accuracy
<table>
<thead>
<tr>
<th>Category</th>
<th>Metric</th>
<th>Meta-Llama-3.1-70B-Instruct</th>
<th>RedHatAI/Llama-3.1-70B-Instruct-NVFP4 (this model)</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="8"><b>OpenLLM V1</b></td>
<td>mmlu_llama</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mmlu_cot_llama (0-shot)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>arc_challenge_llama (0-shot)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gsm8k_llama (8-shot, strict-match)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hellaswag (10-shot)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>winogrande (5-shot)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>truthfulQA (0-shot, mc2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><b>Average</b></td>
<td><b></b></td>
<td><b></b></td>
<td><b>%</b></td>
</tr>
<tr>
<td rowspan="7"><b>OpenLLM V2</b></td>
<td>MMLU-Pro (5-shot)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFEval (0-shot)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BBH (3-shot)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math-|v|-5 (4-shot)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPQA (0-shot)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MuSR (0-shot)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><b>Average</b></td>
<td><b></b></td>
<td><b></b></td>
<td><b>%</b></td>
</tr>
<tr>
<td><b>Coding</b></td>
<td>HumanEval pass@1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HumanEval_64 pass@2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Reproduction
The results were obtained using the following commands:
#### MMLU_LLAMA
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
--tasks mmlu_llama \
--apply_chat_template \
--fewshot_as_multiturn \
--batch_size auto
```
#### MMLU_COT_LLAMA
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
--tasks mmlu_cot_llama \
--apply_chat_template \
--fewshot_as_multiturn \
--batch_size auto
```
#### ARC-Challenge
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
--tasks arc_challenge_llama \
--apply_chat_template \
--batch_size auto
```
#### GSM-8K
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
--tasks gsm8k_llama \
--apply_chat_template \
--fewshot_as_multiturn \
--batch_size auto
```
#### Hellaswag
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
--tasks hellaswag \
--apply_chat_template \
--fewshot_as_multiturn \
--batch_size auto
```
#### Winogrande
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
--tasks winogrande \
--apply_chat_template \
--fewshot_as_multiturn \
--batch_size auto
```
#### TruthfulQA
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
--tasks truthfulqa \
--apply_chat_template \
--fewshot_as_multiturn \
--batch_size auto
```
#### OpenLLM v2
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
--apply_chat_template \
--fewshot_as_multiturn \
--tasks leaderboard \
--batch_size auto
```
#### HumanEval and HumanEval_64
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
--apply_chat_template \
--fewshot_as_multiturn \
--tasks humaneval_instruct \
--batch_size auto
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
--apply_chat_template \
--fewshot_as_multiturn \
--tasks humaneval_64_instruct \
--batch_size auto
```