|
--- |
|
tags: |
|
- fp4 |
|
- vllm |
|
language: |
|
- en |
|
- de |
|
- fr |
|
- it |
|
- pt |
|
- hi |
|
- es |
|
- th |
|
pipeline_tag: text-generation |
|
license: llama3.1 |
|
base_model: meta-llama/Meta-Llama-3.1-70B-Instruct |
|
--- |
|
|
|
# Meta-Llama-3.1-70B-Instruct-NVFP4 |
|
|
|
## Model Overview |
|
- **Model Architecture:** Meta-Llama-3.1 |
|
- **Input:** Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Weight quantization:** FP4 |
|
- **Activation quantization:** FP4 |
|
- **Intended Use Cases:** Intended for commercial and research use in multiple languages. Similarly to [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct), this models is intended for assistant-like chat. |
|
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. |
|
- **Release Date:** 6/25/2025 |
|
- **Version:** 1.0 |
|
- **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE) |
|
- **Model Developers:** RedHatAI |
|
|
|
This model is a quantized version of [Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct). |
|
It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model. |
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing the weights and activations of [Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct) to FP4 data type, ready for inference with vLLM>=0.9.1 |
|
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 25%. |
|
|
|
Only the weights and activations of the linear operators within transformers blocks are quantized using [LLM Compressor](https://github.com/vllm-project/llm-compressor). |
|
|
|
## Deployment |
|
|
|
### Use with vLLM |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from vllm import LLM, SamplingParams |
|
from transformers import AutoTokenizer |
|
|
|
model_id = "RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4" |
|
number_gpus = 2 |
|
|
|
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, |
|
{"role": "user", "content": "Who are you?"}, |
|
] |
|
|
|
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) |
|
|
|
llm = LLM(model=model_id, tensor_parallel_size=number_gpus) |
|
|
|
outputs = llm.generate(prompts, sampling_params) |
|
|
|
generated_text = outputs[0].outputs[0].text |
|
print(generated_text) |
|
``` |
|
|
|
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
## Creation |
|
|
|
This model was created by applying [LLM Compressor with calibration samples from UltraChat](https://github.com/vllm-project/llm-compressor/blob/main/examples/quantization_w4a4_fp4/llama3_example.py), as presented in the code snipet below. |
|
|
|
```python |
|
from datasets import load_dataset |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
from llmcompressor import oneshot |
|
from llmcompressor.modifiers.quantization import QuantizationModifier |
|
from llmcompressor.utils import dispatch_for_generation |
|
|
|
MODEL_ID = "meta-llama/Meta-Llama-3-8B-Instruct" |
|
|
|
# Load model. |
|
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype="auto") |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) |
|
|
|
DATASET_ID = "HuggingFaceH4/ultrachat_200k" |
|
DATASET_SPLIT = "train_sft" |
|
|
|
# Select number of samples. 512 samples is a good place to start. |
|
# Increasing the number of samples can improve accuracy. |
|
NUM_CALIBRATION_SAMPLES = 512 |
|
MAX_SEQUENCE_LENGTH = 2048 |
|
|
|
# Load dataset and preprocess. |
|
ds = load_dataset(DATASET_ID, split=f"{DATASET_SPLIT}[:{NUM_CALIBRATION_SAMPLES}]") |
|
ds = ds.shuffle(seed=42) |
|
|
|
def preprocess(example): |
|
return { |
|
"text": tokenizer.apply_chat_template( |
|
example["messages"], |
|
tokenize=False, |
|
) |
|
} |
|
|
|
ds = ds.map(preprocess) |
|
|
|
# Tokenize inputs. |
|
def tokenize(sample): |
|
return tokenizer( |
|
sample["text"], |
|
padding=False, |
|
max_length=MAX_SEQUENCE_LENGTH, |
|
truncation=True, |
|
add_special_tokens=False, |
|
) |
|
|
|
ds = ds.map(tokenize, remove_columns=ds.column_names) |
|
|
|
# Configure the quantization algorithm and scheme. |
|
# In this case, we: |
|
# * quantize the weights to fp4 with per group 16 via ptq |
|
# * calibrate a global_scale for activations, which will be used to |
|
# quantize activations to fp4 on the fly |
|
recipe = QuantizationModifier(targets="Linear", scheme="NVFP4", ignore=["lm_head"]) |
|
|
|
# Save to disk in compressed-tensors format. |
|
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-NVFP4" |
|
|
|
# Apply quantization. |
|
oneshot( |
|
model=model, |
|
dataset=ds, |
|
recipe=recipe, |
|
max_seq_length=MAX_SEQUENCE_LENGTH, |
|
num_calibration_samples=NUM_CALIBRATION_SAMPLES, |
|
output_dir=SAVE_DIR, |
|
) |
|
|
|
print("\n\n") |
|
print("========== SAMPLE GENERATION ==============") |
|
dispatch_for_generation(model) |
|
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda") |
|
output = model.generate(input_ids, max_new_tokens=100) |
|
print(tokenizer.decode(output[0])) |
|
print("==========================================\n\n") |
|
|
|
model.save_pretrained(SAVE_DIR, save_compressed=True) |
|
tokenizer.save_pretrained(SAVE_DIR) |
|
|
|
``` |
|
|
|
## Evaluation |
|
|
|
This model was evaluated on the well-known OpenLLM v1, OpenLLM v2, HumanEval, and HumanEval_64 benchmarks. All evaluations were conducted using [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness). |
|
|
|
### Accuracy |
|
|
|
<table> |
|
<thead> |
|
<tr> |
|
<th>Category</th> |
|
<th>Metric</th> |
|
<th>Meta-Llama-3.1-70B-Instruct</th> |
|
<th>RedHatAI/Llama-3.1-70B-Instruct-NVFP4 (this model)</th> |
|
<th>Recovery (%)</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td rowspan="8"><b>OpenLLM V1</b></td> |
|
<td>mmlu_llama</td> |
|
<td></td> |
|
<td></td> |
|
<td></td> |
|
</tr> |
|
<tr> |
|
<td>mmlu_cot_llama (0-shot)</td> |
|
<td></td> |
|
<td></td> |
|
<td></td> |
|
</tr> |
|
<tr> |
|
<td>arc_challenge_llama (0-shot)</td> |
|
<td></td> |
|
<td></td> |
|
<td></td> |
|
</tr> |
|
<tr> |
|
<td>gsm8k_llama (8-shot, strict-match)</td> |
|
<td></td> |
|
<td></td> |
|
<td></td> |
|
</tr> |
|
<tr> |
|
<td>hellaswag (10-shot)</td> |
|
<td></td> |
|
<td></td> |
|
<td></td> |
|
</tr> |
|
<tr> |
|
<td>winogrande (5-shot)</td> |
|
<td></td> |
|
<td></td> |
|
<td></td> |
|
</tr> |
|
<tr> |
|
<td>truthfulQA (0-shot, mc2)</td> |
|
<td></td> |
|
<td></td> |
|
<td></td> |
|
</tr> |
|
<tr> |
|
<td><b>Average</b></td> |
|
<td><b></b></td> |
|
<td><b></b></td> |
|
<td><b>%</b></td> |
|
</tr> |
|
<tr> |
|
<td rowspan="7"><b>OpenLLM V2</b></td> |
|
<td>MMLU-Pro (5-shot)</td> |
|
<td></td> |
|
<td></td> |
|
<td></td> |
|
</tr> |
|
<tr> |
|
<td>IFEval (0-shot)</td> |
|
<td></td> |
|
<td></td> |
|
<td></td> |
|
</tr> |
|
<tr> |
|
<td>BBH (3-shot)</td> |
|
<td></td> |
|
<td></td> |
|
<td></td> |
|
</tr> |
|
<tr> |
|
<td>Math-|v|-5 (4-shot)</td> |
|
<td></td> |
|
<td></td> |
|
<td></td> |
|
</tr> |
|
<tr> |
|
<td>GPQA (0-shot)</td> |
|
<td></td> |
|
<td></td> |
|
<td></td> |
|
</tr> |
|
<tr> |
|
<td>MuSR (0-shot)</td> |
|
<td></td> |
|
<td></td> |
|
<td></td> |
|
</tr> |
|
<tr> |
|
<td><b>Average</b></td> |
|
<td><b></b></td> |
|
<td><b></b></td> |
|
<td><b>%</b></td> |
|
</tr> |
|
|
|
<tr> |
|
<td><b>Coding</b></td> |
|
<td>HumanEval pass@1</td> |
|
<td></td> |
|
<td></td> |
|
<td></td> |
|
</tr> |
|
<tr> |
|
<td></td> |
|
<td>HumanEval_64 pass@2</td> |
|
<td></td> |
|
<td></td> |
|
<td></td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
|
|
### Reproduction |
|
|
|
The results were obtained using the following commands: |
|
|
|
#### MMLU_LLAMA |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \ |
|
--tasks mmlu_llama \ |
|
--apply_chat_template \ |
|
--fewshot_as_multiturn \ |
|
--batch_size auto |
|
``` |
|
|
|
#### MMLU_COT_LLAMA |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \ |
|
--tasks mmlu_cot_llama \ |
|
--apply_chat_template \ |
|
--fewshot_as_multiturn \ |
|
--batch_size auto |
|
``` |
|
|
|
#### ARC-Challenge |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \ |
|
--tasks arc_challenge_llama \ |
|
--apply_chat_template \ |
|
--batch_size auto |
|
``` |
|
|
|
#### GSM-8K |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \ |
|
--tasks gsm8k_llama \ |
|
--apply_chat_template \ |
|
--fewshot_as_multiturn \ |
|
--batch_size auto |
|
``` |
|
|
|
#### Hellaswag |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \ |
|
--tasks hellaswag \ |
|
--apply_chat_template \ |
|
--fewshot_as_multiturn \ |
|
--batch_size auto |
|
``` |
|
|
|
#### Winogrande |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \ |
|
--tasks winogrande \ |
|
--apply_chat_template \ |
|
--fewshot_as_multiturn \ |
|
--batch_size auto |
|
``` |
|
|
|
#### TruthfulQA |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \ |
|
--tasks truthfulqa \ |
|
--apply_chat_template \ |
|
--fewshot_as_multiturn \ |
|
--batch_size auto |
|
``` |
|
|
|
#### OpenLLM v2 |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\ |
|
--apply_chat_template \ |
|
--fewshot_as_multiturn \ |
|
--tasks leaderboard \ |
|
--batch_size auto |
|
``` |
|
|
|
#### HumanEval and HumanEval_64 |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\ |
|
--apply_chat_template \ |
|
--fewshot_as_multiturn \ |
|
--tasks humaneval_instruct \ |
|
--batch_size auto |
|
|
|
|
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\ |
|
--apply_chat_template \ |
|
--fewshot_as_multiturn \ |
|
--tasks humaneval_64_instruct \ |
|
--batch_size auto |
|
``` |