File size: 11,068 Bytes
2e50ac3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
---
tags:
- fp4
- vllm
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
pipeline_tag: text-generation
license: llama3.1
base_model: meta-llama/Meta-Llama-3.1-70B-Instruct
---
# Meta-Llama-3.1-70B-Instruct-NVFP4
## Model Overview
- **Model Architecture:** Meta-Llama-3.1
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** FP4
- **Activation quantization:** FP4
- **Intended Use Cases:** Intended for commercial and research use in multiple languages. Similarly to [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct), this models is intended for assistant-like chat.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
- **Release Date:** 6/25/2025
- **Version:** 1.0
- **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
- **Model Developers:** RedHatAI
This model is a quantized version of [Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct).
It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model.
### Model Optimizations
This model was obtained by quantizing the weights and activations of [Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct) to FP4 data type, ready for inference with vLLM>=0.9.1
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 25%.
Only the weights and activations of the linear operators within transformers blocks are quantized using [LLM Compressor](https://github.com/vllm-project/llm-compressor).
## Deployment
### Use with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4"
number_gpus = 2
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
This model was created by applying [LLM Compressor with calibration samples from UltraChat](https://github.com/vllm-project/llm-compressor/blob/main/examples/quantization_w4a4_fp4/llama3_example.py), as presented in the code snipet below.
```python
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.utils import dispatch_for_generation
MODEL_ID = "meta-llama/Meta-Llama-3-8B-Instruct"
# Load model.
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
DATASET_ID = "HuggingFaceH4/ultrachat_200k"
DATASET_SPLIT = "train_sft"
# Select number of samples. 512 samples is a good place to start.
# Increasing the number of samples can improve accuracy.
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 2048
# Load dataset and preprocess.
ds = load_dataset(DATASET_ID, split=f"{DATASET_SPLIT}[:{NUM_CALIBRATION_SAMPLES}]")
ds = ds.shuffle(seed=42)
def preprocess(example):
return {
"text": tokenizer.apply_chat_template(
example["messages"],
tokenize=False,
)
}
ds = ds.map(preprocess)
# Tokenize inputs.
def tokenize(sample):
return tokenizer(
sample["text"],
padding=False,
max_length=MAX_SEQUENCE_LENGTH,
truncation=True,
add_special_tokens=False,
)
ds = ds.map(tokenize, remove_columns=ds.column_names)
# Configure the quantization algorithm and scheme.
# In this case, we:
# * quantize the weights to fp4 with per group 16 via ptq
# * calibrate a global_scale for activations, which will be used to
# quantize activations to fp4 on the fly
recipe = QuantizationModifier(targets="Linear", scheme="NVFP4", ignore=["lm_head"])
# Save to disk in compressed-tensors format.
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-NVFP4"
# Apply quantization.
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
output_dir=SAVE_DIR,
)
print("\n\n")
print("========== SAMPLE GENERATION ==============")
dispatch_for_generation(model)
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_new_tokens=100)
print(tokenizer.decode(output[0]))
print("==========================================\n\n")
model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)
```
## Evaluation
This model was evaluated on the well-known OpenLLM v1, OpenLLM v2, HumanEval, and HumanEval_64 benchmarks. All evaluations were conducted using [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness).
### Accuracy
<table>
<thead>
<tr>
<th>Category</th>
<th>Metric</th>
<th>Meta-Llama-3.1-70B-Instruct</th>
<th>RedHatAI/Llama-3.1-70B-Instruct-NVFP4 (this model)</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="8"><b>OpenLLM V1</b></td>
<td>mmlu_llama</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mmlu_cot_llama (0-shot)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>arc_challenge_llama (0-shot)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gsm8k_llama (8-shot, strict-match)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hellaswag (10-shot)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>winogrande (5-shot)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>truthfulQA (0-shot, mc2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><b>Average</b></td>
<td><b></b></td>
<td><b></b></td>
<td><b>%</b></td>
</tr>
<tr>
<td rowspan="7"><b>OpenLLM V2</b></td>
<td>MMLU-Pro (5-shot)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFEval (0-shot)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BBH (3-shot)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math-|v|-5 (4-shot)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPQA (0-shot)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MuSR (0-shot)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><b>Average</b></td>
<td><b></b></td>
<td><b></b></td>
<td><b>%</b></td>
</tr>
<tr>
<td><b>Coding</b></td>
<td>HumanEval pass@1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HumanEval_64 pass@2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Reproduction
The results were obtained using the following commands:
#### MMLU_LLAMA
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
--tasks mmlu_llama \
--apply_chat_template \
--fewshot_as_multiturn \
--batch_size auto
```
#### MMLU_COT_LLAMA
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
--tasks mmlu_cot_llama \
--apply_chat_template \
--fewshot_as_multiturn \
--batch_size auto
```
#### ARC-Challenge
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
--tasks arc_challenge_llama \
--apply_chat_template \
--batch_size auto
```
#### GSM-8K
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
--tasks gsm8k_llama \
--apply_chat_template \
--fewshot_as_multiturn \
--batch_size auto
```
#### Hellaswag
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
--tasks hellaswag \
--apply_chat_template \
--fewshot_as_multiturn \
--batch_size auto
```
#### Winogrande
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
--tasks winogrande \
--apply_chat_template \
--fewshot_as_multiturn \
--batch_size auto
```
#### TruthfulQA
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
--tasks truthfulqa \
--apply_chat_template \
--fewshot_as_multiturn \
--batch_size auto
```
#### OpenLLM v2
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
--apply_chat_template \
--fewshot_as_multiturn \
--tasks leaderboard \
--batch_size auto
```
#### HumanEval and HumanEval_64
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
--apply_chat_template \
--fewshot_as_multiturn \
--tasks humaneval_instruct \
--batch_size auto
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
--apply_chat_template \
--fewshot_as_multiturn \
--tasks humaneval_64_instruct \
--batch_size auto
``` |