Homunculus-GGUF / README.md
aashish1904's picture
Upload README.md with huggingface_hub
89f5a6d verified
---
language:
- en
license: apache-2.0
library_name: transformers
base_model:
- mistralai/Mistral-Nemo-Base-2407 # lightweight student
- Qwen/Qwen3-235B-A22B # thinking + non-thinking teacher
tags:
- distillation
- /think
- /nothink
- reasoning-transfer
- arcee-ai
---
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
# QuantFactory/Homunculus-GGUF
This is quantized version of [arcee-ai/Homunculus](https://huggingface.co/arcee-ai/Homunculus) created using llama.cpp
# Original Model Card
![Homunculus Logo](https://huggingface.co/arcee-ai/Homunculus/resolve/main/logo.jpg)
# Arcee **Homunculus-12B**
**Homunculus** is a 12 billion-parameter instruction model distilled from **Qwen3-235B** onto the **Mistral-Nemo** backbone.
It was purpose-built to preserve Qwen’s two-mode interaction style—`/think` (deliberate chain-of-thought) and `/nothink` (concise answers)—while running on a single consumer GPU.
---
## ✨ What’s special?
| Feature | Detail |
| --------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------- |
| **Reasoning-trace transfer** | Instead of copying just final probabilities, we align *full* logit trajectories, yielding more faithful reasoning. |
| **Total-Variation-Distance loss** | To better match the teacher’s confidence distribution and smooth the loss landscape. |
| **Tokenizer replacement** | The original Mistral tokenizer was swapped for Qwen3's tokenizer. |
| **Dual interaction modes** | Use `/think` when you want transparent step-by-step reasoning (good for analysis & debugging). Use `/nothink` for terse, production-ready answers. Most reliable in the system role field. | |
---
## Benchmark results
| Benchmark | Score |
| --------- | ----- |
| GPQADiamond (average of 3) | 57.1% |
| mmlu | 67.5% |
## 🔧 Quick Start
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "arcee-ai/Homunculus"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype="auto",
device_map="auto"
)
# /think mode - Chain-of-thought reasoning
messages = [
{"role": "system", "content": "You are a helpful assistant. /think"},
{"role": "user", "content": "Why is the sky blue?"},
]
output = model.generate(
tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt"),
max_new_tokens=512,
temperature=0.7
)
print(tokenizer.decode(output[0], skip_special_tokens=True))
# /nothink mode - Direct answers
messages = [
{"role": "system", "content": "You are a helpful assistant. /nothink"},
{"role": "user", "content": "Summarize the plot of Hamlet in two sentences."},
]
output = model.generate(
tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt"),
max_new_tokens=128,
temperature=0.7
)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## 💡 Intended Use & Limitations
Homunculus is designed for:
* **Research** on reasoning-trace distillation, Logit Imitation, and mode-switchable assistants.
* **Lightweight production** deployments that need strong reasoning at <12 GB VRAM.
### Known limitations
* May inherit biases from the Qwen3 teacher and internet-scale pretraining data.
* Long-context (>32 k tokens) use is experimental—expect latency & memory overhead.
---