aashish1904 commited on
Commit
89f5a6d
·
verified ·
1 Parent(s): 482e26c

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +107 -0
README.md ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ language:
5
+ - en
6
+ license: apache-2.0
7
+ library_name: transformers
8
+ base_model:
9
+ - mistralai/Mistral-Nemo-Base-2407 # lightweight student
10
+ - Qwen/Qwen3-235B-A22B # thinking + non-thinking teacher
11
+ tags:
12
+ - distillation
13
+ - /think
14
+ - /nothink
15
+ - reasoning-transfer
16
+ - arcee-ai
17
+
18
+ ---
19
+
20
+ [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
21
+
22
+
23
+ # QuantFactory/Homunculus-GGUF
24
+ This is quantized version of [arcee-ai/Homunculus](https://huggingface.co/arcee-ai/Homunculus) created using llama.cpp
25
+
26
+ # Original Model Card
27
+
28
+
29
+ ![Homunculus Logo](https://huggingface.co/arcee-ai/Homunculus/resolve/main/logo.jpg)
30
+
31
+ # Arcee **Homunculus-12B**
32
+
33
+ **Homunculus** is a 12 billion-parameter instruction model distilled from **Qwen3-235B** onto the **Mistral-Nemo** backbone.
34
+ It was purpose-built to preserve Qwen’s two-mode interaction style—`/think` (deliberate chain-of-thought) and `/nothink` (concise answers)—while running on a single consumer GPU.
35
+
36
+ ---
37
+
38
+ ## ✨ What’s special?
39
+
40
+ | Feature | Detail |
41
+ | --------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------- |
42
+ | **Reasoning-trace transfer** | Instead of copying just final probabilities, we align *full* logit trajectories, yielding more faithful reasoning. |
43
+ | **Total-Variation-Distance loss** | To better match the teacher’s confidence distribution and smooth the loss landscape. |
44
+ | **Tokenizer replacement** | The original Mistral tokenizer was swapped for Qwen3's tokenizer. |
45
+ | **Dual interaction modes** | Use `/think` when you want transparent step-by-step reasoning (good for analysis & debugging). Use `/nothink` for terse, production-ready answers. Most reliable in the system role field. | |
46
+
47
+ ---
48
+
49
+ ## Benchmark results
50
+
51
+ | Benchmark | Score |
52
+ | --------- | ----- |
53
+ | GPQADiamond (average of 3) | 57.1% |
54
+ | mmlu | 67.5% |
55
+
56
+ ## 🔧 Quick Start
57
+
58
+ ```python
59
+ from transformers import AutoTokenizer, AutoModelForCausalLM
60
+
61
+ model_id = "arcee-ai/Homunculus"
62
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
63
+ model = AutoModelForCausalLM.from_pretrained(
64
+ model_id,
65
+ torch_dtype="auto",
66
+ device_map="auto"
67
+ )
68
+
69
+ # /think mode - Chain-of-thought reasoning
70
+ messages = [
71
+ {"role": "system", "content": "You are a helpful assistant. /think"},
72
+ {"role": "user", "content": "Why is the sky blue?"},
73
+ ]
74
+ output = model.generate(
75
+ tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt"),
76
+ max_new_tokens=512,
77
+ temperature=0.7
78
+ )
79
+ print(tokenizer.decode(output[0], skip_special_tokens=True))
80
+
81
+ # /nothink mode - Direct answers
82
+ messages = [
83
+ {"role": "system", "content": "You are a helpful assistant. /nothink"},
84
+ {"role": "user", "content": "Summarize the plot of Hamlet in two sentences."},
85
+ ]
86
+ output = model.generate(
87
+ tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt"),
88
+ max_new_tokens=128,
89
+ temperature=0.7
90
+ )
91
+ print(tokenizer.decode(output[0], skip_special_tokens=True))
92
+ ```
93
+
94
+ ## 💡 Intended Use & Limitations
95
+
96
+ Homunculus is designed for:
97
+
98
+ * **Research** on reasoning-trace distillation, Logit Imitation, and mode-switchable assistants.
99
+ * **Lightweight production** deployments that need strong reasoning at <12 GB VRAM.
100
+
101
+ ### Known limitations
102
+
103
+ * May inherit biases from the Qwen3 teacher and internet-scale pretraining data.
104
+ * Long-context (>32 k tokens) use is experimental—expect latency & memory overhead.
105
+
106
+ ---
107
+