Padomin's picture
update model card README.md
8a35fde
|
raw
history blame
3.1 kB
metadata
license: cc-by-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - te_dx_jp
model-index:
  - name: t5-base-TEDxJP-2front-1body-2rear
    results: []

t5-base-TEDxJP-2front-1body-2rear

This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4473
  • Wer: 0.1735
  • Mer: 0.1675
  • Wil: 0.2549
  • Wip: 0.7451
  • Hits: 55674
  • Substitutions: 6443
  • Deletions: 2470
  • Insertions: 2291
  • Cer: 0.1360

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Wer Mer Wil Wip Hits Substitutions Deletions Insertions Cer
0.5915 1.0 1457 0.4825 0.2230 0.2081 0.2976 0.7024 54814 6785 2988 4630 0.1980
0.5402 2.0 2914 0.4359 0.1855 0.1779 0.2664 0.7336 55358 6566 2663 2753 0.1503
0.4635 3.0 4371 0.4277 0.1762 0.1701 0.2584 0.7416 55538 6528 2521 2334 0.1368
0.3608 4.0 5828 0.4271 0.1723 0.1667 0.2529 0.7471 55621 6337 2629 2160 0.1342
0.3825 5.0 7285 0.4276 0.1724 0.1666 0.2527 0.7473 55669 6328 2590 2214 0.1343
0.3814 6.0 8742 0.4278 0.1727 0.1670 0.2537 0.7463 55613 6373 2601 2179 0.1360
0.3412 7.0 10199 0.4344 0.1724 0.1668 0.2539 0.7461 55631 6410 2546 2180 0.1352
0.3175 8.0 11656 0.4392 0.1724 0.1665 0.2534 0.7466 55713 6394 2480 2259 0.1362
0.2871 9.0 13113 0.4456 0.1732 0.1671 0.2538 0.7462 55748 6393 2446 2347 0.1360
0.3317 10.0 14570 0.4473 0.1735 0.1675 0.2549 0.7451 55674 6443 2470 2291 0.1360

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1