metadata
license: cc-by-sa-4.0
tags:
- generated_from_trainer
datasets:
- te_dx_jp
model-index:
- name: t5-base-TEDxJP-2front-1body-2rear
results: []
t5-base-TEDxJP-2front-1body-2rear
This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:
- Loss: 0.4473
- Wer: 0.1735
- Mer: 0.1675
- Wil: 0.2549
- Wip: 0.7451
- Hits: 55674
- Substitutions: 6443
- Deletions: 2470
- Insertions: 2291
- Cer: 0.1360
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.5915 | 1.0 | 1457 | 0.4825 | 0.2230 | 0.2081 | 0.2976 | 0.7024 | 54814 | 6785 | 2988 | 4630 | 0.1980 |
0.5402 | 2.0 | 2914 | 0.4359 | 0.1855 | 0.1779 | 0.2664 | 0.7336 | 55358 | 6566 | 2663 | 2753 | 0.1503 |
0.4635 | 3.0 | 4371 | 0.4277 | 0.1762 | 0.1701 | 0.2584 | 0.7416 | 55538 | 6528 | 2521 | 2334 | 0.1368 |
0.3608 | 4.0 | 5828 | 0.4271 | 0.1723 | 0.1667 | 0.2529 | 0.7471 | 55621 | 6337 | 2629 | 2160 | 0.1342 |
0.3825 | 5.0 | 7285 | 0.4276 | 0.1724 | 0.1666 | 0.2527 | 0.7473 | 55669 | 6328 | 2590 | 2214 | 0.1343 |
0.3814 | 6.0 | 8742 | 0.4278 | 0.1727 | 0.1670 | 0.2537 | 0.7463 | 55613 | 6373 | 2601 | 2179 | 0.1360 |
0.3412 | 7.0 | 10199 | 0.4344 | 0.1724 | 0.1668 | 0.2539 | 0.7461 | 55631 | 6410 | 2546 | 2180 | 0.1352 |
0.3175 | 8.0 | 11656 | 0.4392 | 0.1724 | 0.1665 | 0.2534 | 0.7466 | 55713 | 6394 | 2480 | 2259 | 0.1362 |
0.2871 | 9.0 | 13113 | 0.4456 | 0.1732 | 0.1671 | 0.2538 | 0.7462 | 55748 | 6393 | 2446 | 2347 | 0.1360 |
0.3317 | 10.0 | 14570 | 0.4473 | 0.1735 | 0.1675 | 0.2549 | 0.7451 | 55674 | 6443 | 2470 | 2291 | 0.1360 |
Framework versions
- Transformers 4.21.2
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.12.1