File size: 3,104 Bytes
6df260b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a35fde
 
 
 
 
 
 
 
 
 
6df260b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a35fde
 
 
 
 
 
 
 
 
 
6df260b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: cc-by-sa-4.0
tags:
- generated_from_trainer
datasets:
- te_dx_jp
model-index:
- name: t5-base-TEDxJP-2front-1body-2rear
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-base-TEDxJP-2front-1body-2rear

This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4473
- Wer: 0.1735
- Mer: 0.1675
- Wil: 0.2549
- Wip: 0.7451
- Hits: 55674
- Substitutions: 6443
- Deletions: 2470
- Insertions: 2291
- Cer: 0.1360

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    | Mer    | Wil    | Wip    | Hits  | Substitutions | Deletions | Insertions | Cer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:|
| 0.5915        | 1.0   | 1457  | 0.4825          | 0.2230 | 0.2081 | 0.2976 | 0.7024 | 54814 | 6785          | 2988      | 4630       | 0.1980 |
| 0.5402        | 2.0   | 2914  | 0.4359          | 0.1855 | 0.1779 | 0.2664 | 0.7336 | 55358 | 6566          | 2663      | 2753       | 0.1503 |
| 0.4635        | 3.0   | 4371  | 0.4277          | 0.1762 | 0.1701 | 0.2584 | 0.7416 | 55538 | 6528          | 2521      | 2334       | 0.1368 |
| 0.3608        | 4.0   | 5828  | 0.4271          | 0.1723 | 0.1667 | 0.2529 | 0.7471 | 55621 | 6337          | 2629      | 2160       | 0.1342 |
| 0.3825        | 5.0   | 7285  | 0.4276          | 0.1724 | 0.1666 | 0.2527 | 0.7473 | 55669 | 6328          | 2590      | 2214       | 0.1343 |
| 0.3814        | 6.0   | 8742  | 0.4278          | 0.1727 | 0.1670 | 0.2537 | 0.7463 | 55613 | 6373          | 2601      | 2179       | 0.1360 |
| 0.3412        | 7.0   | 10199 | 0.4344          | 0.1724 | 0.1668 | 0.2539 | 0.7461 | 55631 | 6410          | 2546      | 2180       | 0.1352 |
| 0.3175        | 8.0   | 11656 | 0.4392          | 0.1724 | 0.1665 | 0.2534 | 0.7466 | 55713 | 6394          | 2480      | 2259       | 0.1362 |
| 0.2871        | 9.0   | 13113 | 0.4456          | 0.1732 | 0.1671 | 0.2538 | 0.7462 | 55748 | 6393          | 2446      | 2347       | 0.1360 |
| 0.3317        | 10.0  | 14570 | 0.4473          | 0.1735 | 0.1675 | 0.2549 | 0.7451 | 55674 | 6443          | 2470      | 2291       | 0.1360 |


### Framework versions

- Transformers 4.21.2
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.12.1