Padomin's picture
update model card README.md
b2e629d
|
raw
history blame
3.1 kB
metadata
license: cc-by-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - te_dx_jp
model-index:
  - name: t5-base-TEDxJP-0front-1body-6rear
    results: []

t5-base-TEDxJP-0front-1body-6rear

This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4698
  • Wer: 0.1756
  • Mer: 0.1696
  • Wil: 0.2578
  • Wip: 0.7422
  • Hits: 55507
  • Substitutions: 6509
  • Deletions: 2571
  • Insertions: 2259
  • Cer: 0.1373

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Wer Mer Wil Wip Hits Substitutions Deletions Insertions Cer
0.6157 1.0 1457 0.4985 0.2141 0.2018 0.2933 0.7067 54712 6913 2962 3955 0.1920
0.5098 2.0 2914 0.4500 0.1847 0.1781 0.2663 0.7337 55040 6505 3042 2383 0.1473
0.4729 3.0 4371 0.4424 0.1768 0.1709 0.2591 0.7409 55397 6509 2681 2227 0.1386
0.4284 4.0 5828 0.4473 0.1753 0.1696 0.2573 0.7427 55457 6461 2669 2194 0.1362
0.394 5.0 7285 0.4462 0.1795 0.1729 0.2612 0.7388 55459 6530 2598 2468 0.1484
0.3556 6.0 8742 0.4521 0.1759 0.1700 0.2579 0.7421 55449 6480 2658 2221 0.1365
0.3348 7.0 10199 0.4588 0.1742 0.1686 0.2567 0.7433 55491 6491 2605 2156 0.1358
0.3594 8.0 11656 0.4608 0.1755 0.1697 0.2580 0.7420 55468 6516 2603 2215 0.1371
0.3065 9.0 13113 0.4685 0.1758 0.1698 0.2580 0.7420 55496 6510 2581 2263 0.1373
0.2976 10.0 14570 0.4698 0.1756 0.1696 0.2578 0.7422 55507 6509 2571 2259 0.1373

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1