metadata
license: cc-by-sa-4.0
tags:
- generated_from_trainer
datasets:
- te_dx_jp
model-index:
- name: t5-base-TEDxJP-0front-1body-6rear
results: []
t5-base-TEDxJP-0front-1body-6rear
This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:
- Loss: 0.4698
- Wer: 0.1756
- Mer: 0.1696
- Wil: 0.2578
- Wip: 0.7422
- Hits: 55507
- Substitutions: 6509
- Deletions: 2571
- Insertions: 2259
- Cer: 0.1373
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.6157 | 1.0 | 1457 | 0.4985 | 0.2141 | 0.2018 | 0.2933 | 0.7067 | 54712 | 6913 | 2962 | 3955 | 0.1920 |
0.5098 | 2.0 | 2914 | 0.4500 | 0.1847 | 0.1781 | 0.2663 | 0.7337 | 55040 | 6505 | 3042 | 2383 | 0.1473 |
0.4729 | 3.0 | 4371 | 0.4424 | 0.1768 | 0.1709 | 0.2591 | 0.7409 | 55397 | 6509 | 2681 | 2227 | 0.1386 |
0.4284 | 4.0 | 5828 | 0.4473 | 0.1753 | 0.1696 | 0.2573 | 0.7427 | 55457 | 6461 | 2669 | 2194 | 0.1362 |
0.394 | 5.0 | 7285 | 0.4462 | 0.1795 | 0.1729 | 0.2612 | 0.7388 | 55459 | 6530 | 2598 | 2468 | 0.1484 |
0.3556 | 6.0 | 8742 | 0.4521 | 0.1759 | 0.1700 | 0.2579 | 0.7421 | 55449 | 6480 | 2658 | 2221 | 0.1365 |
0.3348 | 7.0 | 10199 | 0.4588 | 0.1742 | 0.1686 | 0.2567 | 0.7433 | 55491 | 6491 | 2605 | 2156 | 0.1358 |
0.3594 | 8.0 | 11656 | 0.4608 | 0.1755 | 0.1697 | 0.2580 | 0.7420 | 55468 | 6516 | 2603 | 2215 | 0.1371 |
0.3065 | 9.0 | 13113 | 0.4685 | 0.1758 | 0.1698 | 0.2580 | 0.7420 | 55496 | 6510 | 2581 | 2263 | 0.1373 |
0.2976 | 10.0 | 14570 | 0.4698 | 0.1756 | 0.1696 | 0.2578 | 0.7422 | 55507 | 6509 | 2571 | 2259 | 0.1373 |
Framework versions
- Transformers 4.21.2
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.12.1