update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-sa-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- te_dx_jp
|
7 |
+
model-index:
|
8 |
+
- name: t5-base-TEDxJP-0front-1body-6rear
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# t5-base-TEDxJP-0front-1body-6rear
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.4698
|
20 |
+
- Wer: 0.1756
|
21 |
+
- Mer: 0.1696
|
22 |
+
- Wil: 0.2578
|
23 |
+
- Wip: 0.7422
|
24 |
+
- Hits: 55507
|
25 |
+
- Substitutions: 6509
|
26 |
+
- Deletions: 2571
|
27 |
+
- Insertions: 2259
|
28 |
+
- Cer: 0.1373
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 0.0001
|
48 |
+
- train_batch_size: 32
|
49 |
+
- eval_batch_size: 32
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- lr_scheduler_warmup_ratio: 0.1
|
54 |
+
- num_epochs: 10
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer |
|
59 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:|
|
60 |
+
| 0.6157 | 1.0 | 1457 | 0.4985 | 0.2141 | 0.2018 | 0.2933 | 0.7067 | 54712 | 6913 | 2962 | 3955 | 0.1920 |
|
61 |
+
| 0.5098 | 2.0 | 2914 | 0.4500 | 0.1847 | 0.1781 | 0.2663 | 0.7337 | 55040 | 6505 | 3042 | 2383 | 0.1473 |
|
62 |
+
| 0.4729 | 3.0 | 4371 | 0.4424 | 0.1768 | 0.1709 | 0.2591 | 0.7409 | 55397 | 6509 | 2681 | 2227 | 0.1386 |
|
63 |
+
| 0.4284 | 4.0 | 5828 | 0.4473 | 0.1753 | 0.1696 | 0.2573 | 0.7427 | 55457 | 6461 | 2669 | 2194 | 0.1362 |
|
64 |
+
| 0.394 | 5.0 | 7285 | 0.4462 | 0.1795 | 0.1729 | 0.2612 | 0.7388 | 55459 | 6530 | 2598 | 2468 | 0.1484 |
|
65 |
+
| 0.3556 | 6.0 | 8742 | 0.4521 | 0.1759 | 0.1700 | 0.2579 | 0.7421 | 55449 | 6480 | 2658 | 2221 | 0.1365 |
|
66 |
+
| 0.3348 | 7.0 | 10199 | 0.4588 | 0.1742 | 0.1686 | 0.2567 | 0.7433 | 55491 | 6491 | 2605 | 2156 | 0.1358 |
|
67 |
+
| 0.3594 | 8.0 | 11656 | 0.4608 | 0.1755 | 0.1697 | 0.2580 | 0.7420 | 55468 | 6516 | 2603 | 2215 | 0.1371 |
|
68 |
+
| 0.3065 | 9.0 | 13113 | 0.4685 | 0.1758 | 0.1698 | 0.2580 | 0.7420 | 55496 | 6510 | 2581 | 2263 | 0.1373 |
|
69 |
+
| 0.2976 | 10.0 | 14570 | 0.4698 | 0.1756 | 0.1696 | 0.2578 | 0.7422 | 55507 | 6509 | 2571 | 2259 | 0.1373 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.21.2
|
75 |
+
- Pytorch 1.12.1+cu116
|
76 |
+
- Datasets 2.4.0
|
77 |
+
- Tokenizers 0.12.1
|