Padomin's picture
update model card README.md
1b2d79f
|
raw
history blame
3.12 kB
metadata
license: cc-by-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - te_dx_jp
model-index:
  - name: t5-base-TEDxJP-0front-1body-10rear-order-RB
    results: []

t5-base-TEDxJP-0front-1body-10rear-order-RB

This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4713
  • Wer: 0.1763
  • Mer: 0.1704
  • Wil: 0.2586
  • Wip: 0.7414
  • Hits: 55456
  • Substitutions: 6510
  • Deletions: 2621
  • Insertions: 2256
  • Cer: 0.1383

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 0
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Wer Mer Wil Wip Hits Substitutions Deletions Insertions Cer
0.6725 1.0 1457 0.4909 0.2293 0.2133 0.3017 0.6983 54628 6686 3273 4851 0.2018
0.5083 2.0 2914 0.4537 0.1849 0.1781 0.2663 0.7337 55108 6513 2966 2464 0.1465
0.4943 3.0 4371 0.4466 0.1778 0.1716 0.2599 0.7401 55424 6519 2644 2319 0.1377
0.4454 4.0 5828 0.4385 0.1760 0.1703 0.2579 0.7421 55384 6452 2751 2163 0.1380
0.411 5.0 7285 0.4460 0.1755 0.1697 0.2570 0.7430 55466 6430 2691 2216 0.1379
0.3756 6.0 8742 0.4519 0.1750 0.1694 0.2568 0.7432 55419 6435 2733 2133 0.1383
0.3647 7.0 10199 0.4585 0.1755 0.1699 0.2579 0.7421 55368 6475 2744 2115 0.1379
0.3079 8.0 11656 0.4622 0.1763 0.1704 0.2590 0.7410 55416 6540 2631 2213 0.1387
0.3029 9.0 13113 0.4699 0.1762 0.1703 0.2584 0.7416 55451 6499 2637 2245 0.1386
0.2968 10.0 14570 0.4713 0.1763 0.1704 0.2586 0.7414 55456 6510 2621 2256 0.1383

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1