update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-sa-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- te_dx_jp
|
7 |
+
model-index:
|
8 |
+
- name: t5-base-TEDxJP-0front-1body-10rear-order-RB
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# t5-base-TEDxJP-0front-1body-10rear-order-RB
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.4713
|
20 |
+
- Wer: 0.1763
|
21 |
+
- Mer: 0.1704
|
22 |
+
- Wil: 0.2586
|
23 |
+
- Wip: 0.7414
|
24 |
+
- Hits: 55456
|
25 |
+
- Substitutions: 6510
|
26 |
+
- Deletions: 2621
|
27 |
+
- Insertions: 2256
|
28 |
+
- Cer: 0.1383
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 0.0001
|
48 |
+
- train_batch_size: 32
|
49 |
+
- eval_batch_size: 32
|
50 |
+
- seed: 0
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- lr_scheduler_warmup_ratio: 0.1
|
54 |
+
- num_epochs: 10
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer |
|
59 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:|
|
60 |
+
| 0.6725 | 1.0 | 1457 | 0.4909 | 0.2293 | 0.2133 | 0.3017 | 0.6983 | 54628 | 6686 | 3273 | 4851 | 0.2018 |
|
61 |
+
| 0.5083 | 2.0 | 2914 | 0.4537 | 0.1849 | 0.1781 | 0.2663 | 0.7337 | 55108 | 6513 | 2966 | 2464 | 0.1465 |
|
62 |
+
| 0.4943 | 3.0 | 4371 | 0.4466 | 0.1778 | 0.1716 | 0.2599 | 0.7401 | 55424 | 6519 | 2644 | 2319 | 0.1377 |
|
63 |
+
| 0.4454 | 4.0 | 5828 | 0.4385 | 0.1760 | 0.1703 | 0.2579 | 0.7421 | 55384 | 6452 | 2751 | 2163 | 0.1380 |
|
64 |
+
| 0.411 | 5.0 | 7285 | 0.4460 | 0.1755 | 0.1697 | 0.2570 | 0.7430 | 55466 | 6430 | 2691 | 2216 | 0.1379 |
|
65 |
+
| 0.3756 | 6.0 | 8742 | 0.4519 | 0.1750 | 0.1694 | 0.2568 | 0.7432 | 55419 | 6435 | 2733 | 2133 | 0.1383 |
|
66 |
+
| 0.3647 | 7.0 | 10199 | 0.4585 | 0.1755 | 0.1699 | 0.2579 | 0.7421 | 55368 | 6475 | 2744 | 2115 | 0.1379 |
|
67 |
+
| 0.3079 | 8.0 | 11656 | 0.4622 | 0.1763 | 0.1704 | 0.2590 | 0.7410 | 55416 | 6540 | 2631 | 2213 | 0.1387 |
|
68 |
+
| 0.3029 | 9.0 | 13113 | 0.4699 | 0.1762 | 0.1703 | 0.2584 | 0.7416 | 55451 | 6499 | 2637 | 2245 | 0.1386 |
|
69 |
+
| 0.2968 | 10.0 | 14570 | 0.4713 | 0.1763 | 0.1704 | 0.2586 | 0.7414 | 55456 | 6510 | 2621 | 2256 | 0.1383 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.21.2
|
75 |
+
- Pytorch 1.12.1+cu116
|
76 |
+
- Datasets 2.4.0
|
77 |
+
- Tokenizers 0.12.1
|