stan-northell's picture
Upload folder using huggingface_hub
5e32075 verified
|
raw
history blame
12.2 kB
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 'hasAdditionalInformation: TFP10-73Pepsi Max X 264 TFP10-174 BAT Velo X 353,
hasColourDetails: 1pp - Face Print, hasCreatedDate: 2024-06-12, hasCustomerHomeCountry:
United Kingdom, hasCustomerID: 25892, hasCustomerName: Co-operative Group Limited.(Co-operative
Group Limited (Co-op Food)), hasCutting: Cut to shape, hasElementID: 3343462,
hasElementTitle: POS028 SECURITY SHROUD, hasFinishedSizeHeight: 1540, hasFinishedSizeWidth:
600, hasFlatSizeHeight: 3080, hasFlatSizeWidth: 600, hasFscPaperBeenSpecified:
No, hasInternalID: 354d490a-f709-4034-af56-3e0b28ee34ba, hasMachineFinishing:
Yes, hasMachineFinishingDetails: Trimmed to Size, Fold in Half, Weld Long Edges
Only with 2 x PP Eyelets Positioned as Template - Fold Twice (to 600x515 approx)
for Flat Packing Pack in 2''s, hasMaterialCategory: Plastic, hasMaterialDescription:
180gsm White/White Woven PE, hasMaterialThicknessOrWeight: 180, hasMaterialType:
Polypropylene, hasMaterialUnitOfMeasure: GSM, hasNumberOfVersions: 2, hasPackingRequirements:
Delivery to K Displays, Smith Way Ossett, FAO Dean Newbold. Delivery required
Friday 21st June. Please book in 48hrs in advance and mark all pallets on boxes
with code, qty and P10 2024 Co-op Campaign, hasPrice: 3513.22 GBP, hasPrintedSides:
Single sided, hasProofType: PDF digital proof, hasQuantity: 617, hasRecycledContentBeenOffered:
No, hasSupplierName: Dominion Print Limited(Dominion Print Limited), hasTotalColours:
4, hasUnitOfMeasure: Millimetres (mm), '
- text: 'hasAdditionalInformation: Mailed First Class, hasArtworkDoubleSidedStatus:
Double Sided Different, hasCreatedDate: 2024-03-21, hasCustomerHomeCountry: United
States, hasCustomerID: 32065, hasCustomerName: Republic Services, Inc(Republic
Services), hasCutting: Trim to size, hasElementID: 3192439, hasElementTitle: Crockett
Residental PC Mailer 2024, hasFinishedSizeHeight: 4, hasFinishedSizeWidth: 6,
hasFscPaperBeenSpecified: No, hasInternalID: a63ca51f-99e2-4479-abb8-3e1f48c385e8,
hasMaterialCategory: Paper, hasMaterialDescription: Uncoated Cover, hasMaterialThicknessOrWeight:
100, hasMaterialType: Paper, hasMaterialUnitOfMeasure: Pounds (lbs), hasNumberOfVersions:
1, hasPaperType: Cover, hasPrice: 302.6 USD, hasPrintedSides: Double sided, hasProofType:
PDF digital proof, hasQuantity: 1200, hasRecycledContentBeenOffered: N/A, hasSendToDetails:
[email protected], hasSupplierName: United Printing and Mail
- HHG Strategic Partner (United Printing and Mail - 48084 - HHGSP - US Only),
hasTotalColours: 4, hasTotalColoursFace: 4, hasUnitOfMeasure: Inches (in), '
- text: 'hasAdditionalInformation: US-89839_AIRSUPRA HCP Discover Leave behind Qt
150,000 8.5”x11” flat/finished 80# Chorus Art Coated Cover 6/0 (CMYK + 2PMS) +
Satin AQ S/W in 25s, hasColourDetails: 6/0 (CMYK + 2PMS) + Satin AQ, hasCreatedDate:
2024-07-11, hasCustomerHomeCountry: United States, hasCustomerID: 31753, hasCustomerName:
AstraZeneca Pharmaceuticals LP(AstraZeneca - US - BBU), hasCutting: Trim to size,
hasElementID: 3394425, hasElementTitle: US-89839_AIRSUPRA HCP Discover Leave behind,
hasFinishedSizeHeight: 11, hasFinishedSizeWidth: 8.5, hasFlatSizeHeight: 11, hasFlatSizeWidth:
8.5, hasFscPaperBeenSpecified: Yes, hasInternalID: 91a64b08-cb2a-4d8e-b11d-b3908f11f2cd,
hasMachineFinishing: Yes, hasMachineFinishingDetails: S/W in 25s, hasMaterialCategory:
Paper, hasMaterialDescription: 80# Chorus Art Coated Cover, hasMaterialRecycledPercentage:
30%, hasMaterialThicknessOrWeight: 80, hasMaterialType: Paper and board, hasMaterialUnitOfMeasure:
Pounds (lbs), hasNumberOfVersions: 1, hasPackingRequirements: S/W in 25s, hasPaperType:
Cover, hasPrice: 13847.67 USD, hasPrintedSides: Single sided, hasProductCategory:
Loose Print, hasProofType: PDF digital proof,Colour contract proof, hasQuantity:
150000, hasQuantityPerVersion: 150000, hasRecycledContentBeenOffered: Yes, hasSupplierName:
Phoenix Lithographing Corporation(Phoenix Lithographing Corp - HHGSP - PI), hasTotalColours:
6, hasUnitOfMeasure: Inches (in), '
- text: 'hasAdditionalInformation: US-82104_AIRSUPRA HCP Clinical Leave Behind Qt
650,000 (4pg Bi-fold) 17"x11" flat 8.5"x11" finished 80# Coated Cover 6/6 (CMYK
+ 2PMS) + GLOSS AQ Trim / Score / Bi-Fold S/W in 25s, hasArtworkDoubleSidedStatus:
Double Sided Different, hasColourDetails: 6/6 (CMYK + 2PMS) + GLOSS AQ, hasCreatedDate:
2024-01-18, hasCustomerHomeCountry: United States, hasCustomerID: 31753, hasCustomerName:
AstraZeneca Pharmaceuticals LP(AstraZeneca - US - BBU), hasCutting: Trim to size,
hasElementID: 3071417, hasElementTitle: US-82104_AIRSUPRA HCP Clinical Leave Behind,
hasFinishedSizeHeight: 11, hasFinishedSizeWidth: 8.5, hasFlatSizeHeight: 11, hasFlatSizeWidth:
17, hasFscPaperBeenSpecified: Yes, hasInternalID: a8e77a84-d6af-4478-b83a-a54ea515b6f0,
hasMachineFinishing: Yes, hasMachineFinishingDetails: Trim / Score / Bi-Fold S/W
in 25s, hasMaterialCategory: Paper, hasMaterialDescription: 80# Coated Cover,
hasMaterialRecycledPercentage: 0%, hasMaterialThicknessOrWeight: 80, hasMaterialType:
Paper and board, hasMaterialUnitOfMeasure: Pounds (lbs), hasNumberOfVersions:
1, hasPackingRequirements: S/W in 25s, hasPaperType: Cover, hasPrice: 118754 USD,
hasPrintedSides: Double sided, hasProductCategory: Booklets & Brochures, hasProofType:
Colour contract proof,PDF digital proof, hasQuantity: 650000, hasQuantityPerVersion:
650000, hasRecycledContentBeenOffered: Yes, hasSupplierName: Graphic Arts Incorporated(Graphic
Arts Inc - 56170 - HHGSP), hasTotalColours: 6, hasUnitOfMeasure: Inches (in), '
- text: 'hasCreatedDate: 2024-01-04, hasCustomerHomeCountry: United States, hasCustomerID:
14458, hasCustomerName: Lowe''s Companies Inc(Lowe''s FVS), hasCutting: Trim to
size, hasElementID: 3044623, hasElementTitle: G284515 Commodity Moulding Profile
Card 110911, hasFinishedSizeHeight: 6.875, hasFinishedSizeWidth: 3, hasFlatSizeHeight:
6.875, hasFlatSizeWidth: 3, hasFscPaperBeenSpecified: No, hasInternalID: c88f6dd9-5470-4870-a971-6d88eafb768d,
hasMaterialCategory: Other, hasMaterialDescription: 8PT _C1S Cover, hasMaterialType:
Other, hasNumberOfVersions: 1, hasPrice: 0.01 USD, hasPrintedSides: Single sided,
hasProofType: PDF digital proof, hasQuantity: 1, hasRecycledContentBeenOffered:
N/A, hasSupplierName: HH IC Content Production + Development(HH IC Content Production
+ Development), hasTotalColours: 4, hasUnitOfMeasure: Inches (in), '
metrics:
- f1_micro
- f1_macro
- f1_weighted
- precision
- accuracy
- recall
pipeline_tag: text-classification
library_name: setfit
inference: false
model-index:
- name: SetFit
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Northell/ros-classifiers-materials-flat
type: unknown
split: test
metrics:
- type: f1_micro
value: 0.4888472352389878
name: F1_Micro
- type: f1_macro
value: 0.07490145637740193
name: F1_Macro
- type: f1_weighted
value: 0.45529275569713784
name: F1_Weighted
- type: precision
value: 0.8907103538513184
name: Precision
- type: accuracy
value: 0.9836170077323914
name: Accuracy
- type: recall
value: 0.33686384558677673
name: Recall
---
# SetFit
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
<!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
- **Classification head:** a OneVsRestClassifier instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 43 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
## Evaluation
### Metrics
| Label | F1_Micro | F1_Macro | F1_Weighted | Precision | Accuracy | Recall |
|:--------|:---------|:---------|:------------|:----------|:---------|:-------|
| **all** | 0.4888 | 0.0749 | 0.4553 | 0.8907 | 0.9836 | 0.3369 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("hasCreatedDate: 2024-01-04, hasCustomerHomeCountry: United States, hasCustomerID: 14458, hasCustomerName: Lowe's Companies Inc(Lowe's FVS), hasCutting: Trim to size, hasElementID: 3044623, hasElementTitle: G284515 Commodity Moulding Profile Card 110911, hasFinishedSizeHeight: 6.875, hasFinishedSizeWidth: 3, hasFlatSizeHeight: 6.875, hasFlatSizeWidth: 3, hasFscPaperBeenSpecified: No, hasInternalID: c88f6dd9-5470-4870-a971-6d88eafb768d, hasMaterialCategory: Other, hasMaterialDescription: 8PT _C1S Cover, hasMaterialType: Other, hasNumberOfVersions: 1, hasPrice: 0.01 USD, hasPrintedSides: Single sided, hasProofType: PDF digital proof, hasQuantity: 1, hasRecycledContentBeenOffered: N/A, hasSupplierName: HH IC Content Production + Development(HH IC Content Production + Development), hasTotalColours: 4, hasUnitOfMeasure: Inches (in), ")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:---------|:----|
| Word count | 61 | 109.9881 | 766 |
### Framework Versions
- Python: 3.10.16
- SetFit: 1.1.1
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->