|
|
--- |
|
|
tags: |
|
|
- setfit |
|
|
- sentence-transformers |
|
|
- text-classification |
|
|
- generated_from_setfit_trainer |
|
|
widget: |
|
|
- text: 'hasAdditionalInformation: TFP10-73Pepsi Max X 264 TFP10-174 BAT Velo X 353, |
|
|
hasColourDetails: 1pp - Face Print, hasCreatedDate: 2024-06-12, hasCustomerHomeCountry: |
|
|
United Kingdom, hasCustomerID: 25892, hasCustomerName: Co-operative Group Limited.(Co-operative |
|
|
Group Limited (Co-op Food)), hasCutting: Cut to shape, hasElementID: 3343462, |
|
|
hasElementTitle: POS028 SECURITY SHROUD, hasFinishedSizeHeight: 1540, hasFinishedSizeWidth: |
|
|
600, hasFlatSizeHeight: 3080, hasFlatSizeWidth: 600, hasFscPaperBeenSpecified: |
|
|
No, hasInternalID: 354d490a-f709-4034-af56-3e0b28ee34ba, hasMachineFinishing: |
|
|
Yes, hasMachineFinishingDetails: Trimmed to Size, Fold in Half, Weld Long Edges |
|
|
Only with 2 x PP Eyelets Positioned as Template - Fold Twice (to 600x515 approx) |
|
|
for Flat Packing Pack in 2''s, hasMaterialCategory: Plastic, hasMaterialDescription: |
|
|
180gsm White/White Woven PE, hasMaterialThicknessOrWeight: 180, hasMaterialType: |
|
|
Polypropylene, hasMaterialUnitOfMeasure: GSM, hasNumberOfVersions: 2, hasPackingRequirements: |
|
|
Delivery to K Displays, Smith Way Ossett, FAO Dean Newbold. Delivery required |
|
|
Friday 21st June. Please book in 48hrs in advance and mark all pallets on boxes |
|
|
with code, qty and P10 2024 Co-op Campaign, hasPrice: 3513.22 GBP, hasPrintedSides: |
|
|
Single sided, hasProofType: PDF digital proof, hasQuantity: 617, hasRecycledContentBeenOffered: |
|
|
No, hasSupplierName: Dominion Print Limited(Dominion Print Limited), hasTotalColours: |
|
|
4, hasUnitOfMeasure: Millimetres (mm), ' |
|
|
- text: 'hasAdditionalInformation: Mailed First Class, hasArtworkDoubleSidedStatus: |
|
|
Double Sided Different, hasCreatedDate: 2024-03-21, hasCustomerHomeCountry: United |
|
|
States, hasCustomerID: 32065, hasCustomerName: Republic Services, Inc(Republic |
|
|
Services), hasCutting: Trim to size, hasElementID: 3192439, hasElementTitle: Crockett |
|
|
Residental PC Mailer 2024, hasFinishedSizeHeight: 4, hasFinishedSizeWidth: 6, |
|
|
hasFscPaperBeenSpecified: No, hasInternalID: a63ca51f-99e2-4479-abb8-3e1f48c385e8, |
|
|
hasMaterialCategory: Paper, hasMaterialDescription: Uncoated Cover, hasMaterialThicknessOrWeight: |
|
|
100, hasMaterialType: Paper, hasMaterialUnitOfMeasure: Pounds (lbs), hasNumberOfVersions: |
|
|
1, hasPaperType: Cover, hasPrice: 302.6 USD, hasPrintedSides: Double sided, hasProofType: |
|
|
PDF digital proof, hasQuantity: 1200, hasRecycledContentBeenOffered: N/A, hasSendToDetails: |
|
|
[email protected], hasSupplierName: United Printing and Mail |
|
|
- HHG Strategic Partner (United Printing and Mail - 48084 - HHGSP - US Only), |
|
|
hasTotalColours: 4, hasTotalColoursFace: 4, hasUnitOfMeasure: Inches (in), ' |
|
|
- text: 'hasAdditionalInformation: US-89839_AIRSUPRA HCP Discover Leave behind Qt |
|
|
150,000 8.5”x11” flat/finished 80# Chorus Art Coated Cover 6/0 (CMYK + 2PMS) + |
|
|
Satin AQ S/W in 25s, hasColourDetails: 6/0 (CMYK + 2PMS) + Satin AQ, hasCreatedDate: |
|
|
2024-07-11, hasCustomerHomeCountry: United States, hasCustomerID: 31753, hasCustomerName: |
|
|
AstraZeneca Pharmaceuticals LP(AstraZeneca - US - BBU), hasCutting: Trim to size, |
|
|
hasElementID: 3394425, hasElementTitle: US-89839_AIRSUPRA HCP Discover Leave behind, |
|
|
hasFinishedSizeHeight: 11, hasFinishedSizeWidth: 8.5, hasFlatSizeHeight: 11, hasFlatSizeWidth: |
|
|
8.5, hasFscPaperBeenSpecified: Yes, hasInternalID: 91a64b08-cb2a-4d8e-b11d-b3908f11f2cd, |
|
|
hasMachineFinishing: Yes, hasMachineFinishingDetails: S/W in 25s, hasMaterialCategory: |
|
|
Paper, hasMaterialDescription: 80# Chorus Art Coated Cover, hasMaterialRecycledPercentage: |
|
|
30%, hasMaterialThicknessOrWeight: 80, hasMaterialType: Paper and board, hasMaterialUnitOfMeasure: |
|
|
Pounds (lbs), hasNumberOfVersions: 1, hasPackingRequirements: S/W in 25s, hasPaperType: |
|
|
Cover, hasPrice: 13847.67 USD, hasPrintedSides: Single sided, hasProductCategory: |
|
|
Loose Print, hasProofType: PDF digital proof,Colour contract proof, hasQuantity: |
|
|
150000, hasQuantityPerVersion: 150000, hasRecycledContentBeenOffered: Yes, hasSupplierName: |
|
|
Phoenix Lithographing Corporation(Phoenix Lithographing Corp - HHGSP - PI), hasTotalColours: |
|
|
6, hasUnitOfMeasure: Inches (in), ' |
|
|
- text: 'hasAdditionalInformation: US-82104_AIRSUPRA HCP Clinical Leave Behind Qt |
|
|
650,000 (4pg Bi-fold) 17"x11" flat 8.5"x11" finished 80# Coated Cover 6/6 (CMYK |
|
|
+ 2PMS) + GLOSS AQ Trim / Score / Bi-Fold S/W in 25s, hasArtworkDoubleSidedStatus: |
|
|
Double Sided Different, hasColourDetails: 6/6 (CMYK + 2PMS) + GLOSS AQ, hasCreatedDate: |
|
|
2024-01-18, hasCustomerHomeCountry: United States, hasCustomerID: 31753, hasCustomerName: |
|
|
AstraZeneca Pharmaceuticals LP(AstraZeneca - US - BBU), hasCutting: Trim to size, |
|
|
hasElementID: 3071417, hasElementTitle: US-82104_AIRSUPRA HCP Clinical Leave Behind, |
|
|
hasFinishedSizeHeight: 11, hasFinishedSizeWidth: 8.5, hasFlatSizeHeight: 11, hasFlatSizeWidth: |
|
|
17, hasFscPaperBeenSpecified: Yes, hasInternalID: a8e77a84-d6af-4478-b83a-a54ea515b6f0, |
|
|
hasMachineFinishing: Yes, hasMachineFinishingDetails: Trim / Score / Bi-Fold S/W |
|
|
in 25s, hasMaterialCategory: Paper, hasMaterialDescription: 80# Coated Cover, |
|
|
hasMaterialRecycledPercentage: 0%, hasMaterialThicknessOrWeight: 80, hasMaterialType: |
|
|
Paper and board, hasMaterialUnitOfMeasure: Pounds (lbs), hasNumberOfVersions: |
|
|
1, hasPackingRequirements: S/W in 25s, hasPaperType: Cover, hasPrice: 118754 USD, |
|
|
hasPrintedSides: Double sided, hasProductCategory: Booklets & Brochures, hasProofType: |
|
|
Colour contract proof,PDF digital proof, hasQuantity: 650000, hasQuantityPerVersion: |
|
|
650000, hasRecycledContentBeenOffered: Yes, hasSupplierName: Graphic Arts Incorporated(Graphic |
|
|
Arts Inc - 56170 - HHGSP), hasTotalColours: 6, hasUnitOfMeasure: Inches (in), ' |
|
|
- text: 'hasCreatedDate: 2024-01-04, hasCustomerHomeCountry: United States, hasCustomerID: |
|
|
14458, hasCustomerName: Lowe''s Companies Inc(Lowe''s FVS), hasCutting: Trim to |
|
|
size, hasElementID: 3044623, hasElementTitle: G284515 Commodity Moulding Profile |
|
|
Card 110911, hasFinishedSizeHeight: 6.875, hasFinishedSizeWidth: 3, hasFlatSizeHeight: |
|
|
6.875, hasFlatSizeWidth: 3, hasFscPaperBeenSpecified: No, hasInternalID: c88f6dd9-5470-4870-a971-6d88eafb768d, |
|
|
hasMaterialCategory: Other, hasMaterialDescription: 8PT _C1S Cover, hasMaterialType: |
|
|
Other, hasNumberOfVersions: 1, hasPrice: 0.01 USD, hasPrintedSides: Single sided, |
|
|
hasProofType: PDF digital proof, hasQuantity: 1, hasRecycledContentBeenOffered: |
|
|
N/A, hasSupplierName: HH IC Content Production + Development(HH IC Content Production |
|
|
+ Development), hasTotalColours: 4, hasUnitOfMeasure: Inches (in), ' |
|
|
metrics: |
|
|
- f1_micro |
|
|
- f1_macro |
|
|
- f1_weighted |
|
|
- precision |
|
|
- accuracy |
|
|
- recall |
|
|
pipeline_tag: text-classification |
|
|
library_name: setfit |
|
|
inference: false |
|
|
model-index: |
|
|
- name: SetFit |
|
|
results: |
|
|
- task: |
|
|
type: text-classification |
|
|
name: Text Classification |
|
|
dataset: |
|
|
name: Northell/ros-classifiers-materials-flat |
|
|
type: unknown |
|
|
split: test |
|
|
metrics: |
|
|
- type: f1_micro |
|
|
value: 0.4888472352389878 |
|
|
name: F1_Micro |
|
|
- type: f1_macro |
|
|
value: 0.07490145637740193 |
|
|
name: F1_Macro |
|
|
- type: f1_weighted |
|
|
value: 0.45529275569713784 |
|
|
name: F1_Weighted |
|
|
- type: precision |
|
|
value: 0.8907103538513184 |
|
|
name: Precision |
|
|
- type: accuracy |
|
|
value: 0.9836170077323914 |
|
|
name: Accuracy |
|
|
- type: recall |
|
|
value: 0.33686384558677673 |
|
|
name: Recall |
|
|
--- |
|
|
|
|
|
# SetFit |
|
|
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A OneVsRestClassifier instance is used for classification. |
|
|
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
|
|
## Model Details |
|
|
|
|
|
### Model Description |
|
|
- **Model Type:** SetFit |
|
|
<!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) --> |
|
|
- **Classification head:** a OneVsRestClassifier instance |
|
|
- **Maximum Sequence Length:** 512 tokens |
|
|
- **Number of Classes:** 43 classes |
|
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
|
<!-- - **Language:** Unknown --> |
|
|
<!-- - **License:** Unknown --> |
|
|
|
|
|
### Model Sources |
|
|
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
|
|
## Evaluation |
|
|
|
|
|
### Metrics |
|
|
| Label | F1_Micro | F1_Macro | F1_Weighted | Precision | Accuracy | Recall | |
|
|
|:--------|:---------|:---------|:------------|:----------|:---------|:-------| |
|
|
| **all** | 0.4888 | 0.0749 | 0.4553 | 0.8907 | 0.9836 | 0.3369 | |
|
|
|
|
|
## Uses |
|
|
|
|
|
### Direct Use for Inference |
|
|
|
|
|
First install the SetFit library: |
|
|
|
|
|
```bash |
|
|
pip install setfit |
|
|
``` |
|
|
|
|
|
Then you can load this model and run inference. |
|
|
|
|
|
```python |
|
|
from setfit import SetFitModel |
|
|
|
|
|
# Download from the 🤗 Hub |
|
|
model = SetFitModel.from_pretrained("setfit_model_id") |
|
|
# Run inference |
|
|
preds = model("hasCreatedDate: 2024-01-04, hasCustomerHomeCountry: United States, hasCustomerID: 14458, hasCustomerName: Lowe's Companies Inc(Lowe's FVS), hasCutting: Trim to size, hasElementID: 3044623, hasElementTitle: G284515 Commodity Moulding Profile Card 110911, hasFinishedSizeHeight: 6.875, hasFinishedSizeWidth: 3, hasFlatSizeHeight: 6.875, hasFlatSizeWidth: 3, hasFscPaperBeenSpecified: No, hasInternalID: c88f6dd9-5470-4870-a971-6d88eafb768d, hasMaterialCategory: Other, hasMaterialDescription: 8PT _C1S Cover, hasMaterialType: Other, hasNumberOfVersions: 1, hasPrice: 0.01 USD, hasPrintedSides: Single sided, hasProofType: PDF digital proof, hasQuantity: 1, hasRecycledContentBeenOffered: N/A, hasSupplierName: HH IC Content Production + Development(HH IC Content Production + Development), hasTotalColours: 4, hasUnitOfMeasure: Inches (in), ") |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
### Downstream Use |
|
|
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Out-of-Scope Use |
|
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Bias, Risks and Limitations |
|
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Recommendations |
|
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
|
--> |
|
|
|
|
|
## Training Details |
|
|
|
|
|
### Training Set Metrics |
|
|
| Training set | Min | Median | Max | |
|
|
|:-------------|:----|:---------|:----| |
|
|
| Word count | 61 | 109.9881 | 766 | |
|
|
|
|
|
### Framework Versions |
|
|
- Python: 3.10.16 |
|
|
- SetFit: 1.1.1 |
|
|
- Sentence Transformers: 3.4.1 |
|
|
- Transformers: 4.49.0 |
|
|
- PyTorch: 2.6.0+cu124 |
|
|
- Datasets: 3.2.0 |
|
|
- Tokenizers: 0.21.0 |
|
|
|
|
|
## Citation |
|
|
|
|
|
### BibTeX |
|
|
```bibtex |
|
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
|
doi = {10.48550/ARXIV.2209.11055}, |
|
|
url = {https://arxiv.org/abs/2209.11055}, |
|
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
|
publisher = {arXiv}, |
|
|
year = {2022}, |
|
|
copyright = {Creative Commons Attribution 4.0 International} |
|
|
} |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
## Glossary |
|
|
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Authors |
|
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Contact |
|
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
|
--> |