Upload folder using huggingface_hub
Browse files- 1_Pooling/config.json +10 -0
- README.md +252 -0
- config.json +31 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +48 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 384,
|
| 3 |
+
"pooling_mode_cls_token": true,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- setfit
|
| 4 |
+
- sentence-transformers
|
| 5 |
+
- text-classification
|
| 6 |
+
- generated_from_setfit_trainer
|
| 7 |
+
widget:
|
| 8 |
+
- text: 'hasAdditionalInformation: TFP10-73Pepsi Max X 264 TFP10-174 BAT Velo X 353,
|
| 9 |
+
hasColourDetails: 1pp - Face Print, hasCreatedDate: 2024-06-12, hasCustomerHomeCountry:
|
| 10 |
+
United Kingdom, hasCustomerID: 25892, hasCustomerName: Co-operative Group Limited.(Co-operative
|
| 11 |
+
Group Limited (Co-op Food)), hasCutting: Cut to shape, hasElementID: 3343462,
|
| 12 |
+
hasElementTitle: POS028 SECURITY SHROUD, hasFinishedSizeHeight: 1540, hasFinishedSizeWidth:
|
| 13 |
+
600, hasFlatSizeHeight: 3080, hasFlatSizeWidth: 600, hasFscPaperBeenSpecified:
|
| 14 |
+
No, hasInternalID: 354d490a-f709-4034-af56-3e0b28ee34ba, hasMachineFinishing:
|
| 15 |
+
Yes, hasMachineFinishingDetails: Trimmed to Size, Fold in Half, Weld Long Edges
|
| 16 |
+
Only with 2 x PP Eyelets Positioned as Template - Fold Twice (to 600x515 approx)
|
| 17 |
+
for Flat Packing Pack in 2''s, hasMaterialCategory: Plastic, hasMaterialDescription:
|
| 18 |
+
180gsm White/White Woven PE, hasMaterialThicknessOrWeight: 180, hasMaterialType:
|
| 19 |
+
Polypropylene, hasMaterialUnitOfMeasure: GSM, hasNumberOfVersions: 2, hasPackingRequirements:
|
| 20 |
+
Delivery to K Displays, Smith Way Ossett, FAO Dean Newbold. Delivery required
|
| 21 |
+
Friday 21st June. Please book in 48hrs in advance and mark all pallets on boxes
|
| 22 |
+
with code, qty and P10 2024 Co-op Campaign, hasPrice: 3513.22 GBP, hasPrintedSides:
|
| 23 |
+
Single sided, hasProofType: PDF digital proof, hasQuantity: 617, hasRecycledContentBeenOffered:
|
| 24 |
+
No, hasSupplierName: Dominion Print Limited(Dominion Print Limited), hasTotalColours:
|
| 25 |
+
4, hasUnitOfMeasure: Millimetres (mm), '
|
| 26 |
+
- text: 'hasAdditionalInformation: Mailed First Class, hasArtworkDoubleSidedStatus:
|
| 27 |
+
Double Sided Different, hasCreatedDate: 2024-03-21, hasCustomerHomeCountry: United
|
| 28 |
+
States, hasCustomerID: 32065, hasCustomerName: Republic Services, Inc(Republic
|
| 29 |
+
Services), hasCutting: Trim to size, hasElementID: 3192439, hasElementTitle: Crockett
|
| 30 |
+
Residental PC Mailer 2024, hasFinishedSizeHeight: 4, hasFinishedSizeWidth: 6,
|
| 31 |
+
hasFscPaperBeenSpecified: No, hasInternalID: a63ca51f-99e2-4479-abb8-3e1f48c385e8,
|
| 32 |
+
hasMaterialCategory: Paper, hasMaterialDescription: Uncoated Cover, hasMaterialThicknessOrWeight:
|
| 33 |
+
100, hasMaterialType: Paper, hasMaterialUnitOfMeasure: Pounds (lbs), hasNumberOfVersions:
|
| 34 |
+
1, hasPaperType: Cover, hasPrice: 302.6 USD, hasPrintedSides: Double sided, hasProofType:
|
| 35 |
+
PDF digital proof, hasQuantity: 1200, hasRecycledContentBeenOffered: N/A, hasSendToDetails:
|
| 36 |
+
[email protected], hasSupplierName: United Printing and Mail
|
| 37 |
+
- HHG Strategic Partner (United Printing and Mail - 48084 - HHGSP - US Only),
|
| 38 |
+
hasTotalColours: 4, hasTotalColoursFace: 4, hasUnitOfMeasure: Inches (in), '
|
| 39 |
+
- text: 'hasAdditionalInformation: US-89839_AIRSUPRA HCP Discover Leave behind Qt
|
| 40 |
+
150,000 8.5”x11” flat/finished 80# Chorus Art Coated Cover 6/0 (CMYK + 2PMS) +
|
| 41 |
+
Satin AQ S/W in 25s, hasColourDetails: 6/0 (CMYK + 2PMS) + Satin AQ, hasCreatedDate:
|
| 42 |
+
2024-07-11, hasCustomerHomeCountry: United States, hasCustomerID: 31753, hasCustomerName:
|
| 43 |
+
AstraZeneca Pharmaceuticals LP(AstraZeneca - US - BBU), hasCutting: Trim to size,
|
| 44 |
+
hasElementID: 3394425, hasElementTitle: US-89839_AIRSUPRA HCP Discover Leave behind,
|
| 45 |
+
hasFinishedSizeHeight: 11, hasFinishedSizeWidth: 8.5, hasFlatSizeHeight: 11, hasFlatSizeWidth:
|
| 46 |
+
8.5, hasFscPaperBeenSpecified: Yes, hasInternalID: 91a64b08-cb2a-4d8e-b11d-b3908f11f2cd,
|
| 47 |
+
hasMachineFinishing: Yes, hasMachineFinishingDetails: S/W in 25s, hasMaterialCategory:
|
| 48 |
+
Paper, hasMaterialDescription: 80# Chorus Art Coated Cover, hasMaterialRecycledPercentage:
|
| 49 |
+
30%, hasMaterialThicknessOrWeight: 80, hasMaterialType: Paper and board, hasMaterialUnitOfMeasure:
|
| 50 |
+
Pounds (lbs), hasNumberOfVersions: 1, hasPackingRequirements: S/W in 25s, hasPaperType:
|
| 51 |
+
Cover, hasPrice: 13847.67 USD, hasPrintedSides: Single sided, hasProductCategory:
|
| 52 |
+
Loose Print, hasProofType: PDF digital proof,Colour contract proof, hasQuantity:
|
| 53 |
+
150000, hasQuantityPerVersion: 150000, hasRecycledContentBeenOffered: Yes, hasSupplierName:
|
| 54 |
+
Phoenix Lithographing Corporation(Phoenix Lithographing Corp - HHGSP - PI), hasTotalColours:
|
| 55 |
+
6, hasUnitOfMeasure: Inches (in), '
|
| 56 |
+
- text: 'hasAdditionalInformation: US-82104_AIRSUPRA HCP Clinical Leave Behind Qt
|
| 57 |
+
650,000 (4pg Bi-fold) 17"x11" flat 8.5"x11" finished 80# Coated Cover 6/6 (CMYK
|
| 58 |
+
+ 2PMS) + GLOSS AQ Trim / Score / Bi-Fold S/W in 25s, hasArtworkDoubleSidedStatus:
|
| 59 |
+
Double Sided Different, hasColourDetails: 6/6 (CMYK + 2PMS) + GLOSS AQ, hasCreatedDate:
|
| 60 |
+
2024-01-18, hasCustomerHomeCountry: United States, hasCustomerID: 31753, hasCustomerName:
|
| 61 |
+
AstraZeneca Pharmaceuticals LP(AstraZeneca - US - BBU), hasCutting: Trim to size,
|
| 62 |
+
hasElementID: 3071417, hasElementTitle: US-82104_AIRSUPRA HCP Clinical Leave Behind,
|
| 63 |
+
hasFinishedSizeHeight: 11, hasFinishedSizeWidth: 8.5, hasFlatSizeHeight: 11, hasFlatSizeWidth:
|
| 64 |
+
17, hasFscPaperBeenSpecified: Yes, hasInternalID: a8e77a84-d6af-4478-b83a-a54ea515b6f0,
|
| 65 |
+
hasMachineFinishing: Yes, hasMachineFinishingDetails: Trim / Score / Bi-Fold S/W
|
| 66 |
+
in 25s, hasMaterialCategory: Paper, hasMaterialDescription: 80# Coated Cover,
|
| 67 |
+
hasMaterialRecycledPercentage: 0%, hasMaterialThicknessOrWeight: 80, hasMaterialType:
|
| 68 |
+
Paper and board, hasMaterialUnitOfMeasure: Pounds (lbs), hasNumberOfVersions:
|
| 69 |
+
1, hasPackingRequirements: S/W in 25s, hasPaperType: Cover, hasPrice: 118754 USD,
|
| 70 |
+
hasPrintedSides: Double sided, hasProductCategory: Booklets & Brochures, hasProofType:
|
| 71 |
+
Colour contract proof,PDF digital proof, hasQuantity: 650000, hasQuantityPerVersion:
|
| 72 |
+
650000, hasRecycledContentBeenOffered: Yes, hasSupplierName: Graphic Arts Incorporated(Graphic
|
| 73 |
+
Arts Inc - 56170 - HHGSP), hasTotalColours: 6, hasUnitOfMeasure: Inches (in), '
|
| 74 |
+
- text: 'hasCreatedDate: 2024-01-04, hasCustomerHomeCountry: United States, hasCustomerID:
|
| 75 |
+
14458, hasCustomerName: Lowe''s Companies Inc(Lowe''s FVS), hasCutting: Trim to
|
| 76 |
+
size, hasElementID: 3044623, hasElementTitle: G284515 Commodity Moulding Profile
|
| 77 |
+
Card 110911, hasFinishedSizeHeight: 6.875, hasFinishedSizeWidth: 3, hasFlatSizeHeight:
|
| 78 |
+
6.875, hasFlatSizeWidth: 3, hasFscPaperBeenSpecified: No, hasInternalID: c88f6dd9-5470-4870-a971-6d88eafb768d,
|
| 79 |
+
hasMaterialCategory: Other, hasMaterialDescription: 8PT _C1S Cover, hasMaterialType:
|
| 80 |
+
Other, hasNumberOfVersions: 1, hasPrice: 0.01 USD, hasPrintedSides: Single sided,
|
| 81 |
+
hasProofType: PDF digital proof, hasQuantity: 1, hasRecycledContentBeenOffered:
|
| 82 |
+
N/A, hasSupplierName: HH IC Content Production + Development(HH IC Content Production
|
| 83 |
+
+ Development), hasTotalColours: 4, hasUnitOfMeasure: Inches (in), '
|
| 84 |
+
metrics:
|
| 85 |
+
- f1_micro
|
| 86 |
+
- f1_macro
|
| 87 |
+
- f1_weighted
|
| 88 |
+
- precision
|
| 89 |
+
- accuracy
|
| 90 |
+
- recall
|
| 91 |
+
pipeline_tag: text-classification
|
| 92 |
+
library_name: setfit
|
| 93 |
+
inference: false
|
| 94 |
+
model-index:
|
| 95 |
+
- name: SetFit
|
| 96 |
+
results:
|
| 97 |
+
- task:
|
| 98 |
+
type: text-classification
|
| 99 |
+
name: Text Classification
|
| 100 |
+
dataset:
|
| 101 |
+
name: Northell/ros-classifiers-materials-flat
|
| 102 |
+
type: unknown
|
| 103 |
+
split: test
|
| 104 |
+
metrics:
|
| 105 |
+
- type: f1_micro
|
| 106 |
+
value: 0.4888472352389878
|
| 107 |
+
name: F1_Micro
|
| 108 |
+
- type: f1_macro
|
| 109 |
+
value: 0.07490145637740193
|
| 110 |
+
name: F1_Macro
|
| 111 |
+
- type: f1_weighted
|
| 112 |
+
value: 0.45529275569713784
|
| 113 |
+
name: F1_Weighted
|
| 114 |
+
- type: precision
|
| 115 |
+
value: 0.8907103538513184
|
| 116 |
+
name: Precision
|
| 117 |
+
- type: accuracy
|
| 118 |
+
value: 0.9836170077323914
|
| 119 |
+
name: Accuracy
|
| 120 |
+
- type: recall
|
| 121 |
+
value: 0.33686384558677673
|
| 122 |
+
name: Recall
|
| 123 |
+
---
|
| 124 |
+
|
| 125 |
+
# SetFit
|
| 126 |
+
|
| 127 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A OneVsRestClassifier instance is used for classification.
|
| 128 |
+
|
| 129 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
| 130 |
+
|
| 131 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
| 132 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
| 133 |
+
|
| 134 |
+
## Model Details
|
| 135 |
+
|
| 136 |
+
### Model Description
|
| 137 |
+
- **Model Type:** SetFit
|
| 138 |
+
<!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
|
| 139 |
+
- **Classification head:** a OneVsRestClassifier instance
|
| 140 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 141 |
+
- **Number of Classes:** 43 classes
|
| 142 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
| 143 |
+
<!-- - **Language:** Unknown -->
|
| 144 |
+
<!-- - **License:** Unknown -->
|
| 145 |
+
|
| 146 |
+
### Model Sources
|
| 147 |
+
|
| 148 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
| 149 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
| 150 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
| 151 |
+
|
| 152 |
+
## Evaluation
|
| 153 |
+
|
| 154 |
+
### Metrics
|
| 155 |
+
| Label | F1_Micro | F1_Macro | F1_Weighted | Precision | Accuracy | Recall |
|
| 156 |
+
|:--------|:---------|:---------|:------------|:----------|:---------|:-------|
|
| 157 |
+
| **all** | 0.4888 | 0.0749 | 0.4553 | 0.8907 | 0.9836 | 0.3369 |
|
| 158 |
+
|
| 159 |
+
## Uses
|
| 160 |
+
|
| 161 |
+
### Direct Use for Inference
|
| 162 |
+
|
| 163 |
+
First install the SetFit library:
|
| 164 |
+
|
| 165 |
+
```bash
|
| 166 |
+
pip install setfit
|
| 167 |
+
```
|
| 168 |
+
|
| 169 |
+
Then you can load this model and run inference.
|
| 170 |
+
|
| 171 |
+
```python
|
| 172 |
+
from setfit import SetFitModel
|
| 173 |
+
|
| 174 |
+
# Download from the 🤗 Hub
|
| 175 |
+
model = SetFitModel.from_pretrained("setfit_model_id")
|
| 176 |
+
# Run inference
|
| 177 |
+
preds = model("hasCreatedDate: 2024-01-04, hasCustomerHomeCountry: United States, hasCustomerID: 14458, hasCustomerName: Lowe's Companies Inc(Lowe's FVS), hasCutting: Trim to size, hasElementID: 3044623, hasElementTitle: G284515 Commodity Moulding Profile Card 110911, hasFinishedSizeHeight: 6.875, hasFinishedSizeWidth: 3, hasFlatSizeHeight: 6.875, hasFlatSizeWidth: 3, hasFscPaperBeenSpecified: No, hasInternalID: c88f6dd9-5470-4870-a971-6d88eafb768d, hasMaterialCategory: Other, hasMaterialDescription: 8PT _C1S Cover, hasMaterialType: Other, hasNumberOfVersions: 1, hasPrice: 0.01 USD, hasPrintedSides: Single sided, hasProofType: PDF digital proof, hasQuantity: 1, hasRecycledContentBeenOffered: N/A, hasSupplierName: HH IC Content Production + Development(HH IC Content Production + Development), hasTotalColours: 4, hasUnitOfMeasure: Inches (in), ")
|
| 178 |
+
```
|
| 179 |
+
|
| 180 |
+
<!--
|
| 181 |
+
### Downstream Use
|
| 182 |
+
|
| 183 |
+
*List how someone could finetune this model on their own dataset.*
|
| 184 |
+
-->
|
| 185 |
+
|
| 186 |
+
<!--
|
| 187 |
+
### Out-of-Scope Use
|
| 188 |
+
|
| 189 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 190 |
+
-->
|
| 191 |
+
|
| 192 |
+
<!--
|
| 193 |
+
## Bias, Risks and Limitations
|
| 194 |
+
|
| 195 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 196 |
+
-->
|
| 197 |
+
|
| 198 |
+
<!--
|
| 199 |
+
### Recommendations
|
| 200 |
+
|
| 201 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 202 |
+
-->
|
| 203 |
+
|
| 204 |
+
## Training Details
|
| 205 |
+
|
| 206 |
+
### Training Set Metrics
|
| 207 |
+
| Training set | Min | Median | Max |
|
| 208 |
+
|:-------------|:----|:---------|:----|
|
| 209 |
+
| Word count | 61 | 109.9881 | 766 |
|
| 210 |
+
|
| 211 |
+
### Framework Versions
|
| 212 |
+
- Python: 3.10.16
|
| 213 |
+
- SetFit: 1.1.1
|
| 214 |
+
- Sentence Transformers: 3.4.1
|
| 215 |
+
- Transformers: 4.49.0
|
| 216 |
+
- PyTorch: 2.6.0+cu124
|
| 217 |
+
- Datasets: 3.2.0
|
| 218 |
+
- Tokenizers: 0.21.0
|
| 219 |
+
|
| 220 |
+
## Citation
|
| 221 |
+
|
| 222 |
+
### BibTeX
|
| 223 |
+
```bibtex
|
| 224 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
| 225 |
+
doi = {10.48550/ARXIV.2209.11055},
|
| 226 |
+
url = {https://arxiv.org/abs/2209.11055},
|
| 227 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
| 228 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
| 229 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
| 230 |
+
publisher = {arXiv},
|
| 231 |
+
year = {2022},
|
| 232 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
| 233 |
+
}
|
| 234 |
+
```
|
| 235 |
+
|
| 236 |
+
<!--
|
| 237 |
+
## Glossary
|
| 238 |
+
|
| 239 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 240 |
+
-->
|
| 241 |
+
|
| 242 |
+
<!--
|
| 243 |
+
## Model Card Authors
|
| 244 |
+
|
| 245 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 246 |
+
-->
|
| 247 |
+
|
| 248 |
+
<!--
|
| 249 |
+
## Model Card Contact
|
| 250 |
+
|
| 251 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 252 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "avsolatorio/GIST-small-Embedding-v0",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"hidden_act": "gelu",
|
| 9 |
+
"hidden_dropout_prob": 0.1,
|
| 10 |
+
"hidden_size": 384,
|
| 11 |
+
"id2label": {
|
| 12 |
+
"0": "LABEL_0"
|
| 13 |
+
},
|
| 14 |
+
"initializer_range": 0.02,
|
| 15 |
+
"intermediate_size": 1536,
|
| 16 |
+
"label2id": {
|
| 17 |
+
"LABEL_0": 0
|
| 18 |
+
},
|
| 19 |
+
"layer_norm_eps": 1e-12,
|
| 20 |
+
"max_position_embeddings": 512,
|
| 21 |
+
"model_type": "bert",
|
| 22 |
+
"num_attention_heads": 12,
|
| 23 |
+
"num_hidden_layers": 12,
|
| 24 |
+
"pad_token_id": 0,
|
| 25 |
+
"position_embedding_type": "absolute",
|
| 26 |
+
"torch_dtype": "float32",
|
| 27 |
+
"transformers_version": "4.49.0",
|
| 28 |
+
"type_vocab_size": 2,
|
| 29 |
+
"use_cache": true,
|
| 30 |
+
"vocab_size": 30522
|
| 31 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.4.1",
|
| 4 |
+
"transformers": "4.49.0",
|
| 5 |
+
"pytorch": "2.6.0+cu124"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
config_setfit.json
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"labels": [
|
| 3 |
+
"https://www.northell.com/taxonomies/MaterialTypes/TextilesCategory",
|
| 4 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Artboard",
|
| 5 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Leather",
|
| 6 |
+
"https://www.northell.com/taxonomies/MaterialTypes/FabricCategory",
|
| 7 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Softwood",
|
| 8 |
+
"https://www.northell.com/taxonomies/MaterialTypes/PVC",
|
| 9 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Hardwood",
|
| 10 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Nylon",
|
| 11 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Particleboard",
|
| 12 |
+
"https://www.northell.com/taxonomies/MaterialTypes/PLABioplastic",
|
| 13 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Paper",
|
| 14 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Polyurethane",
|
| 15 |
+
"https://www.northell.com/taxonomies/MaterialTypes/FoamBoard",
|
| 16 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Medium-densityfibreboardMDF",
|
| 17 |
+
"https://www.northell.com/taxonomies/MaterialTypes/PlasticCategory",
|
| 18 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Bamboo",
|
| 19 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Aluminium",
|
| 20 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Tinplate",
|
| 21 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Displayboard",
|
| 22 |
+
"https://www.northell.com/taxonomies/MaterialTypes/LDPE",
|
| 23 |
+
"https://www.northell.com/taxonomies/MaterialTypes/MetalsCategory",
|
| 24 |
+
"https://www.northell.com/taxonomies/MaterialTypes/MaterialTypeScheme",
|
| 25 |
+
"https://www.northell.com/taxonomies/MaterialTypes/ABS",
|
| 26 |
+
"https://www.northell.com/taxonomies/MaterialTypes/PaperCategory",
|
| 27 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Corrugated",
|
| 28 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Paperandboard",
|
| 29 |
+
"https://www.northell.com/taxonomies/MaterialTypes/WoodCategory",
|
| 30 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Steel",
|
| 31 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Polystyrol",
|
| 32 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Acrylics",
|
| 33 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Polypropylene",
|
| 34 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Polystyrene",
|
| 35 |
+
"https://www.northell.com/taxonomies/MaterialTypes/HDPE",
|
| 36 |
+
"https://www.northell.com/taxonomies/MaterialTypes/PET",
|
| 37 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Polycarbonate",
|
| 38 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Wool",
|
| 39 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Cotton",
|
| 40 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Polyester",
|
| 41 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Fabric",
|
| 42 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Iron",
|
| 43 |
+
"https://www.northell.com/taxonomies/MaterialTypes/OtherCategory",
|
| 44 |
+
"https://www.northell.com/taxonomies/MaterialTypes/Other",
|
| 45 |
+
"https://www.northell.com/taxonomies/MaterialTypes/AcrylicsPolymethylmethacrylate"
|
| 46 |
+
],
|
| 47 |
+
"normalize_embeddings": false
|
| 48 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:efa751a822b7eb0a7db5d0167b6e38ffd6ad1978e71de205d7c0efedcc18bf2a
|
| 3 |
+
size 133462128
|
model_head.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d4e093ed8471559d53424417b7ce370af389102c3d2e5d6eff0d6ba2df9212cb
|
| 3 |
+
size 104996
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": true
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "[MASK]",
|
| 50 |
+
"model_max_length": 512,
|
| 51 |
+
"never_split": null,
|
| 52 |
+
"pad_token": "[PAD]",
|
| 53 |
+
"sep_token": "[SEP]",
|
| 54 |
+
"strip_accents": null,
|
| 55 |
+
"tokenize_chinese_chars": true,
|
| 56 |
+
"tokenizer_class": "BertTokenizer",
|
| 57 |
+
"unk_token": "[UNK]"
|
| 58 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|