tatoeba-vi-tok

This model is a fine-tuned version of Helsinki-NLP/opus-mt-vi-en on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6910
  • Bleu: 46.4356

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu
1.2609 1.0 1167 1.0286 33.8552
0.98 2.0 2334 0.8700 39.5255
0.8347 3.0 3501 0.8036 41.4872
0.7753 4.0 4668 0.7661 43.3025
0.7272 5.0 5835 0.7389 44.2770
0.6876 6.0 7002 0.7254 45.1330
0.659 7.0 8169 0.7153 45.4847
0.6383 8.0 9336 0.7067 45.4353
0.6122 9.0 10503 0.7015 45.7612
0.5998 10.0 11670 0.6979 46.0799
0.5836 11.0 12837 0.6960 46.1173
0.5732 12.0 14004 0.6928 46.2538
0.5607 13.0 15171 0.6919 46.3801
0.553 14.0 16338 0.6911 46.3629
0.5518 15.0 17505 0.6910 46.4356

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.7.1+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
20
Safetensors
Model size
71.7M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for NetherQuartz/tatoeba-vi-tok

Finetuned
(3)
this model

Dataset used to train NetherQuartz/tatoeba-vi-tok

Collection including NetherQuartz/tatoeba-vi-tok