tatoeba-tok-vi

This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-vi on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4522
  • Bleu: 28.3689

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu
2.1935 1.0 1167 1.8939 12.2773
1.8284 2.0 2334 1.6966 19.6177
1.6192 3.0 3501 1.6043 23.4603
1.5213 4.0 4668 1.5553 24.4698
1.44 5.0 5835 1.5231 25.0087
1.3675 6.0 7002 1.5010 26.2754
1.3185 7.0 8169 1.4864 26.7454
1.2766 8.0 9336 1.4758 27.1840
1.2286 9.0 10503 1.4652 27.3690
1.2045 10.0 11670 1.4613 27.5355
1.1712 11.0 12837 1.4573 28.0098
1.1546 12.0 14004 1.4546 27.9113
1.1281 13.0 15171 1.4537 28.2765
1.1166 14.0 16338 1.4528 28.3006
1.1113 15.0 17505 1.4522 28.3689

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.7.1+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
20
Safetensors
Model size
71.7M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for NetherQuartz/tatoeba-tok-vi

Finetuned
(15)
this model

Dataset used to train NetherQuartz/tatoeba-tok-vi

Collection including NetherQuartz/tatoeba-tok-vi