metadata
language:
- zh
- en
tags:
- similarity
- antonym
- synonym
near-synonym
near-synonym, 中文反义词/近义词(antonym/synonym)工具包.
一、安装
0. 注意事项
默认不指定numpy版本(标准版numpy==1.20.4)
标准版本的依赖包详见 requirements-all.txt
1. 通过PyPI安装
pip install near-synonym
使用镜像源, 如:
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple near-synonym
二、使用方式
2.1 快速使用, 反义词, 近义词
import near_synonym
word = "喜欢"
word_antonyms = near_synonym.antonyms(word)
word_synonyms = near_synonym.synonyms(word)
print("反义词:")
print(word_antonyms)
print("近义词:")
print(word_synonyms)
"""
反义词:
[('讨厌', 0.6954), ('不爱', 0.6714), ('偏爱', 0.6676), ('太爱', 0.6472), ('花心', 0.6421), ('在乎', 0.6395), ('好感', 0.6378), ('酷爱', 0.634)]
近义词:
[('最爱', 0.84), ('爱好', 0.8274), ('超爱', 0.8213), ('爱上', 0.8107), ('爱玩', 0.8039), ('狂爱', 0.798), ('大胆', 0.7852), ('喜欢上', 0.7826)]
请输入word:
"""
2.2 详细使用
import near_synonym
word = "喜欢"
word_antonyms = near_synonym.antonyms(word, topk=8, annk=256, annk_cpu=128, batch_size=32,
rate_ann=0.4, rate_sim=0.4, rate_len=0.2, rounded=4, is_debug=False)
print("反义词:")
print(word_antonyms)
# 速度很慢, 召回数量annk_cpu/annk可以调小
三、技术原理
3.1 技术详情
near-synonym, 中文反义词/近义词工具包.
流程: Word2vec -> ANN -> NLI -> Length
# Word2vec, 词向量, 使用skip-ngram的词向量;
# ANN, 近邻搜索, 使用annoy检索召回;
# NLI, 自然语言推断, 使用Roformer-sim的v2版本, 区分反义词/近义词;
# Length, 惩罚项, 词语的文本长度惩罚;
3.2 TODO
1. 使用大模型构建语料, 训练小的NLI模型, 替换roformer-sim-ft.
四、对比
4.1 相似度比较
词语 | 2016词林改进版 | 知网hownet | Synonyms | near-synonym |
---|---|---|---|---|
"轿车","汽车" | 0.82 | 1.0 | 0.73 | 0.86 |
"宝石","宝物" | 0.83 | 0.17 | 0.71 | 0.81 |
"旅游","游历" | 1.0 | 1.0 | 0.59 | 0.72 |
"男孩子","小伙子" | 0.81 | 1.0 | 0.88 | 0.83 |
"海岸","海滨" | 0.94 | 1.0 | 0.68 | 0.9 |
"庇护所","精神病院" | 0.96 | 0.58 | 0.64 | 0.62 |
"魔术师","巫师" | 0.85 | 0.58 | 0.66 | 0.78 |
"火炉","炉灶" | 1.0 | 1.0 | 0.81 | 0.83 |
"中午","正午" | 0.98 | 0.58 | 0.85 | 0.88 |
"食物","水果" | 0.35 | 0.14 | 0.74 | 0.82 |
"鸟","公鸡" | 0.64 | 1.0 | 0.67 | 0.72 |
"鸟","鹤" | 0.1 | 1.0 | 0.64 | 0.81 |
"工具","器械" | 0.53 | 1.0 | 0.62 | 0.75 |
"兄弟","和尚" | 0.37 | 0.80 | 0.59 | 0.7 |
"起重机","器械" | 0.53 | 0.35 | 0.61 | 0.65 |
注:2016词林改进版/知网hownet/Synonyms数据、分数来源于chatopera/Synonyms。同义词林及知网数据、分数的次级来源为liuhuanyong/SentenceSimilarity。 |
五、参考
- https://ai.tencent.com/ailab/nlp/en/index.html
- https://github.com/ZhuiyiTechnology/roformer-sim
- https://github.com/liuhuanyong/SentenceSimilarity
- https://github.com/yongzhuo/Macropodus
- https://github.com/chatopera/Synonyms
Reference
For citing this work, you can refer to the present GitHub project. For example, with BibTeX:
@misc{Macropodus,
howpublished = {https://github.com/yongzhuo/near-synonym},
title = {near-synonym},
author = {Yongzhuo Mo},
publisher = {GitHub},
year = {2024}
}