File size: 4,018 Bytes
f428c90 85f8332 f428c90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
---
language:
- zh
- en
tags:
- similarity
- antonym
- synonym
---
# near-synonym
>>> near-synonym, 中文反义词/近义词(antonym/synonym)工具包.
# 一、安装
```
0. 注意事项
默认不指定numpy版本(标准版numpy==1.20.4)
标准版本的依赖包详见 requirements-all.txt
1. 通过PyPI安装
pip install near-synonym
使用镜像源, 如:
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple near-synonym
```
# 二、使用方式
## 2.1 快速使用, 反义词, 近义词
```python3
import near_synonym
word = "喜欢"
word_antonyms = near_synonym.antonyms(word)
word_synonyms = near_synonym.synonyms(word)
print("反义词:")
print(word_antonyms)
print("近义词:")
print(word_synonyms)
"""
反义词:
[('讨厌', 0.6954), ('不爱', 0.6714), ('偏爱', 0.6676), ('太爱', 0.6472), ('花心', 0.6421), ('在乎', 0.6395), ('好感', 0.6378), ('酷爱', 0.634)]
近义词:
[('最爱', 0.84), ('爱好', 0.8274), ('超爱', 0.8213), ('爱上', 0.8107), ('爱玩', 0.8039), ('狂爱', 0.798), ('大胆', 0.7852), ('喜欢上', 0.7826)]
请输入word:
"""
```
## 2.2 详细使用
```python3
import near_synonym
word = "喜欢"
word_antonyms = near_synonym.antonyms(word, topk=8, annk=256, annk_cpu=128, batch_size=32,
rate_ann=0.4, rate_sim=0.4, rate_len=0.2, rounded=4, is_debug=False)
print("反义词:")
print(word_antonyms)
# 速度很慢, 召回数量annk_cpu/annk可以调小
```
# 三、技术原理
## 3.1 技术详情
```
near-synonym, 中文反义词/近义词工具包.
流程: Word2vec -> ANN -> NLI -> Length
# Word2vec, 词向量, 使用skip-ngram的词向量;
# ANN, 近邻搜索, 使用annoy检索召回;
# NLI, 自然语言推断, 使用Roformer-sim的v2版本, 区分反义词/近义词;
# Length, 惩罚项, 词语的文本长度惩罚;
```
## 3.2 TODO
```
1. 使用大模型构建语料, 训练小的NLI模型, 替换roformer-sim-ft.
```
# 四、对比
## 4.1 相似度比较
| 词语 | 2016词林改进版 | 知网hownet | Synonyms | near-synonym |
|--------------|-----------------|---------------|-----------------| ----------------- |
| "轿车","汽车" | 0.82 | 1.0 | 0.73 | 0.86 |
| "宝石","宝物" | 0.83 | 0.17 | 0.71 | 0.81 |
| "旅游","游历" | 1.0 | 1.0 | 0.59 | 0.72 |
| "男孩子","小伙子" | 0.81 | 1.0 | 0.88 | 0.83 |
| "海岸","海滨" | 0.94 | 1.0 | 0.68 | 0.9 |
| "庇护所","精神病院" | 0.96 | 0.58 | 0.64 | 0.62 |
| "魔术师","巫师" | 0.85 | 0.58 | 0.66 | 0.78 |
| "火炉","炉灶" | 1.0 | 1.0 | 0.81 | 0.83 |
| "中午","正午" | 0.98 | 0.58 | 0.85 | 0.88 |
| "食物","水果" | 0.35 | 0.14 | 0.74 | 0.82 |
| "鸟","公鸡" | 0.64 | 1.0 | 0.67 | 0.72 |
| "鸟","鹤" | 0.1 | 1.0 | 0.64 | 0.81 |
| "工具","器械" | 0.53 | 1.0 | 0.62 | 0.75 |
| "兄弟","和尚" | 0.37 | 0.80 | 0.59 | 0.7 |
| "起重机","器械" | 0.53 | 0.35 | 0.61 | 0.65 |
注:2016词林改进版/知网hownet/Synonyms数据、分数来源于[chatopera/Synonyms](https://github.com/chatopera/Synonyms)。同义词林及知网数据、分数的次级来源为[liuhuanyong/SentenceSimilarity](https://github.com/liuhuanyong/SentenceSimilarity)。
# 五、参考
- [https://ai.tencent.com/ailab/nlp/en/index.html](https://ai.tencent.com/ailab/nlp/en/index.html)
- [https://github.com/ZhuiyiTechnology/roformer-sim](https://github.com/ZhuiyiTechnology/roformer-sim)
- [https://github.com/liuhuanyong/SentenceSimilarity](https://github.com/liuhuanyong/SentenceSimilarity)
- [https://github.com/yongzhuo/Macropodus](https://github.com/yongzhuo/Macropodus)
- [https://github.com/chatopera/Synonyms](https://github.com/chatopera/Synonyms)
# Reference
For citing this work, you can refer to the present GitHub project. For example, with BibTeX:
```
@misc{Macropodus,
howpublished = {https://github.com/yongzhuo/near-synonym},
title = {near-synonym},
author = {Yongzhuo Mo},
publisher = {GitHub},
year = {2024}
}
``` |