|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- generated_from_trainer |
|
- ukrainian |
|
- style-transfer |
|
- text-editing |
|
- mt5 |
|
model-index: |
|
- name: mt5-small-ukrainian-style-editor |
|
results: [] |
|
--- |
|
|
|
# mt5-small-ukrainian-style-editor |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) designed for **stylistic editing of Ukrainian texts**. |
|
It transforms raw or non-native phrasing into improved, stylistically polished Ukrainian, making it suitable for academic, journalistic, or official contexts.. |
|
|
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2027 |
|
- Score: 41.4271 |
|
- Counts: [18650, 13567, 10522, 7822] |
|
- Totals: [25663, 22534, 19416, 16463] |
|
- Precisions: [72.67271947940615, 60.206798615425576, 54.192418623815406, 47.51260402113831] |
|
- Bp: 0.7151 |
|
- Sys Len: 25663 |
|
- Ref Len: 34270 |
|
|
|
## 🧠 Model Description |
|
|
|
This model was trained using a hybrid approach, combining: |
|
- Dictionary-based style correction (e.g., calque removal). |
|
- Fine-tuning on paragraph-aligned pairs of original and stylistically improved Ukrainian text. |
|
|
|
The base model is multilingual T5 (mT5), allowing flexible encoder-decoder performance and cross-lingual generalization, adapted to the specifics of Ukrainian syntax and style. |
|
|
|
## 📌 Intended Uses & Limitations |
|
|
|
### ✅ Intended Uses |
|
- Stylistic enhancement of Ukrainian texts. |
|
- Detection and correction of translationese or poor phrasing. |
|
- Text improvement for public communication, official writing, and journalism. |
|
|
|
### ⚠️ Limitations |
|
- Not intended for grammar correction or spell-checking. |
|
- May occasionally preserve non-stylistic errors if present in training data. |
|
- Performance is best on formal or semi-formal text. |
|
|
|
## 📊 Training and Evaluation Data |
|
|
|
Training used a custom dataset uploaded to Hugging Face: [Kulynych/training_data](https://huggingface.co/datasets/Kulynych/training_data). |
|
Each entry contains: |
|
- `input_text`: raw Ukrainian text (possibly containing calques or awkward phrasing). |
|
- `target_text`: human-edited version of the same paragraph, stylistically improved. |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Score | Counts | Totals | Precisions | Bp | Sys Len | Ref Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:---------------------------:|:----------------------------:|:------------------------------------------------------------------------------:|:------:|:-------:|:-------:| |
|
| 0.2888 | 1.0 | 3129 | 0.2095 | 41.1095 | [18518, 13411, 10404, 7739] | [25905, 22776, 19652, 16594] | [71.48426944605289, 58.88215665612926, 52.94117647058823, 46.6373387971556] | 0.7240 | 25905 | 34270 | |
|
| 0.2325 | 2.0 | 6258 | 0.2027 | 41.4271 | [18650, 13567, 10522, 7822] | [25663, 22534, 19416, 16463] | [72.67271947940615, 60.206798615425576, 54.192418623815406, 47.51260402113831] | 0.7151 | 25663 | 34270 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.50.3 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.5.0 |
|
- Tokenizers 0.21.1 |
|
|
|
### Evaluation Metric |
|
- **SacreBLEU** score: **41.43** (after 2nd epoch) |
|
- **Validation Loss**: **0.2027** |
|
|
|
| Epoch | Step | Val Loss | SacreBLEU | Bp | Precisions (%) | |
|
|-------|------|----------|-----------|--------|---------------------------------------------| |
|
| 1 | 3129 | 0.2095 | 41.11 | 0.7240 | [71.48, 58.88, 52.94, 46.63] | |
|
| 2 | 6258 | 0.2027 | 41.43 | 0.7151 | [72.67, 60.20, 54.19, 47.51] | |
|
|
|
## 💻 How to Use |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Kulynych/mt5-small-ukrainian-style-editor") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("Kulynych/mt5-small-ukrainian-style-editor") |
|
|
|
text = "Згідно з даними, котрі ми отримали, ситуація погіршилась." |
|
inputs = tokenizer(text, return_tensors="pt") |
|
output = model.generate(**inputs, max_length=192) |
|
print(tokenizer.decode(output[0], skip_special_tokens=True)) |
|
|