--- library_name: transformers license: apache-2.0 base_model: google/mt5-small tags: - generated_from_trainer - ukrainian - style-transfer - text-editing - mt5 model-index: - name: mt5-small-ukrainian-style-editor results: [] --- # mt5-small-ukrainian-style-editor This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) designed for **stylistic editing of Ukrainian texts**. It transforms raw or non-native phrasing into improved, stylistically polished Ukrainian, making it suitable for academic, journalistic, or official contexts.. It achieves the following results on the evaluation set: - Loss: 0.2027 - Score: 41.4271 - Counts: [18650, 13567, 10522, 7822] - Totals: [25663, 22534, 19416, 16463] - Precisions: [72.67271947940615, 60.206798615425576, 54.192418623815406, 47.51260402113831] - Bp: 0.7151 - Sys Len: 25663 - Ref Len: 34270 ## 🧠 Model Description This model was trained using a hybrid approach, combining: - Dictionary-based style correction (e.g., calque removal). - Fine-tuning on paragraph-aligned pairs of original and stylistically improved Ukrainian text. The base model is multilingual T5 (mT5), allowing flexible encoder-decoder performance and cross-lingual generalization, adapted to the specifics of Ukrainian syntax and style. ## 📌 Intended Uses & Limitations ### ✅ Intended Uses - Stylistic enhancement of Ukrainian texts. - Detection and correction of translationese or poor phrasing. - Text improvement for public communication, official writing, and journalism. ### ⚠️ Limitations - Not intended for grammar correction or spell-checking. - May occasionally preserve non-stylistic errors if present in training data. - Performance is best on formal or semi-formal text. ## 📊 Training and Evaluation Data Training used a custom dataset uploaded to Hugging Face: [Kulynych/training_data](https://huggingface.co/datasets/Kulynych/training_data). Each entry contains: - `input_text`: raw Ukrainian text (possibly containing calques or awkward phrasing). - `target_text`: human-edited version of the same paragraph, stylistically improved. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Score | Counts | Totals | Precisions | Bp | Sys Len | Ref Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------------------------:|:----------------------------:|:------------------------------------------------------------------------------:|:------:|:-------:|:-------:| | 0.2888 | 1.0 | 3129 | 0.2095 | 41.1095 | [18518, 13411, 10404, 7739] | [25905, 22776, 19652, 16594] | [71.48426944605289, 58.88215665612926, 52.94117647058823, 46.6373387971556] | 0.7240 | 25905 | 34270 | | 0.2325 | 2.0 | 6258 | 0.2027 | 41.4271 | [18650, 13567, 10522, 7822] | [25663, 22534, 19416, 16463] | [72.67271947940615, 60.206798615425576, 54.192418623815406, 47.51260402113831] | 0.7151 | 25663 | 34270 | ### Framework versions - Transformers 4.50.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1 ### Evaluation Metric - **SacreBLEU** score: **41.43** (after 2nd epoch) - **Validation Loss**: **0.2027** | Epoch | Step | Val Loss | SacreBLEU | Bp | Precisions (%) | |-------|------|----------|-----------|--------|---------------------------------------------| | 1 | 3129 | 0.2095 | 41.11 | 0.7240 | [71.48, 58.88, 52.94, 46.63] | | 2 | 6258 | 0.2027 | 41.43 | 0.7151 | [72.67, 60.20, 54.19, 47.51] | ## 💻 How to Use ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("Kulynych/mt5-small-ukrainian-style-editor") model = AutoModelForSeq2SeqLM.from_pretrained("Kulynych/mt5-small-ukrainian-style-editor") text = "Згідно з даними, котрі ми отримали, ситуація погіршилась." inputs = tokenizer(text, return_tensors="pt") output = model.generate(**inputs, max_length=192) print(tokenizer.decode(output[0], skip_special_tokens=True))