metadata
license: other
tags:
- merge
- mergekit
- lazymergekit
- mlabonne/ChimeraLlama-3-8B-v2
- nbeerbower/llama-3-stella-8B
- uygarkurt/llama-3-merged-linear
base_model:
- mlabonne/ChimeraLlama-3-8B-v2
- nbeerbower/llama-3-stella-8B
- uygarkurt/llama-3-merged-linear
model-index:
- name: NeuralLLaMa-3-8b-DT-v0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 43.71
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Kukedlc/NeuralLLaMa-3-8b-DT-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 28.01
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Kukedlc/NeuralLLaMa-3-8b-DT-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 7.25
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Kukedlc/NeuralLLaMa-3-8b-DT-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 7.05
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Kukedlc/NeuralLLaMa-3-8b-DT-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 9.69
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Kukedlc/NeuralLLaMa-3-8b-DT-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 31.02
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Kukedlc/NeuralLLaMa-3-8b-DT-v0.1
name: Open LLM Leaderboard
NeuralLLaMa-3-8b-DT-v0.1
NeuralLLaMa-3-8b-DT-v0.1 is a merge of the following models using LazyMergekit:
🧩 Configuration
models:
- model: NousResearch/Meta-Llama-3-8B
# No parameters necessary for base model
- model: mlabonne/ChimeraLlama-3-8B-v2
parameters:
density: 0.33
weight: 0.2
- model: nbeerbower/llama-3-stella-8B
parameters:
density: 0.44
weight: 0.4
- model: uygarkurt/llama-3-merged-linear
parameters:
density: 0.55
weight: 0.4
merge_method: dare_ties
base_model: NousResearch/Meta-Llama-3-8B
parameters:
int8_mask: true
dtype: float16
🗨️ Chats
💻 Usage
!pip install -qU transformers accelerate bitsandbytes
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, BitsAndBytesConfig
import torch
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
MODEL_NAME = 'Kukedlc/NeuralLLaMa-3-8b-DT-v0.1'
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map='cuda:0', quantization_config=bnb_config)
prompt_system = "You are an advanced language model that speaks Spanish fluently, clearly, and precisely.\
You are called Roberto the Robot and you are an aspiring post-modern artist."
prompt = "Create a piece of art that represents how you see yourself, Roberto, as an advanced LLm, with ASCII art, mixing diagrams, engineering and let yourself go."
chat = [
{"role": "system", "content": f"{prompt_system}"},
{"role": "user", "content": f"{prompt}"},
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(chat, return_tensors="pt").to('cuda')
streamer = TextStreamer(tokenizer)
stop_token = "<|eot_id|>"
stop = tokenizer.encode(stop_token)[0]
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=1024, do_sample=True, temperature=0.7, repetition_penalty=1.2, top_p=0.9, eos_token_id=stop)
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 21.12 |
IFEval (0-Shot) | 43.71 |
BBH (3-Shot) | 28.01 |
MATH Lvl 5 (4-Shot) | 7.25 |
GPQA (0-shot) | 7.05 |
MuSR (0-shot) | 9.69 |
MMLU-PRO (5-shot) | 31.02 |