NeuralLLaMa-3-8b-DT-v0.1
NeuralLLaMa-3-8b-DT-v0.1 is a merge of the following models using LazyMergekit:
𧩠Configuration
models:
- model: NousResearch/Meta-Llama-3-8B
# No parameters necessary for base model
- model: mlabonne/ChimeraLlama-3-8B-v2
parameters:
density: 0.33
weight: 0.2
- model: nbeerbower/llama-3-stella-8B
parameters:
density: 0.44
weight: 0.4
- model: uygarkurt/llama-3-merged-linear
parameters:
density: 0.55
weight: 0.4
merge_method: dare_ties
base_model: NousResearch/Meta-Llama-3-8B
parameters:
int8_mask: true
dtype: float16
π¨οΈ Chats
π» Usage
!pip install -qU transformers accelerate bitsandbytes
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, BitsAndBytesConfig
import torch
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
MODEL_NAME = 'Kukedlc/NeuralLLaMa-3-8b-DT-v0.1'
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map='cuda:0', quantization_config=bnb_config)
prompt_system = "You are an advanced language model that speaks Spanish fluently, clearly, and precisely.\
You are called Roberto the Robot and you are an aspiring post-modern artist."
prompt = "Create a piece of art that represents how you see yourself, Roberto, as an advanced LLm, with ASCII art, mixing diagrams, engineering and let yourself go."
chat = [
{"role": "system", "content": f"{prompt_system}"},
{"role": "user", "content": f"{prompt}"},
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(chat, return_tensors="pt").to('cuda')
streamer = TextStreamer(tokenizer)
stop_token = "<|eot_id|>"
stop = tokenizer.encode(stop_token)[0]
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=1024, do_sample=True, temperature=0.7, repetition_penalty=1.2, top_p=0.9, eos_token_id=stop)
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 21.12 |
IFEval (0-Shot) | 43.71 |
BBH (3-Shot) | 28.01 |
MATH Lvl 5 (4-Shot) | 7.25 |
GPQA (0-shot) | 7.05 |
MuSR (0-shot) | 9.69 |
MMLU-PRO (5-shot) | 31.02 |
- Downloads last month
- 6,230
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Kukedlc/NeuralLLaMa-3-8b-DT-v0.1
Merge model
this model
Spaces using Kukedlc/NeuralLLaMa-3-8b-DT-v0.1 8
Evaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard43.710
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard28.010
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard7.250
- acc_norm on GPQA (0-shot)Open LLM Leaderboard7.050
- acc_norm on MuSR (0-shot)Open LLM Leaderboard9.690
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard31.020