|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:6000 |
|
- loss:CosineSimilarityLoss |
|
base_model: keepitreal/vietnamese-sbert |
|
widget: |
|
- source_sentence: 64 /161 c số92 phường linh trung quận quận tân bình long an |
|
sentences: |
|
- 179 /108 a số53 đường nguyễn văn cừ phường quận thanh xuân hà nội |
|
- 184 /22 c số116 ngõ196 điện biên phủ quận đống đa hải phòng |
|
- 64 /161 c số92 phường linh trung quận quận tân bình long an |
|
- source_sentence: 164 /222 c, số291 kim, mã, quận, long, biên, hải, phòng |
|
sentences: |
|
- 282 /223 b số41 ngõ39 đường kim mã quận hồàn kiếm hải phòng |
|
- 164 /222 c, số291 kim, mã, quận, long, biên, hải, phòng |
|
- 136 /25 c. số43 hem108 đuong. phường. bengõ nghe. quangõ 3 vũng. tàu |
|
- source_sentence: 168 /127 a số53 nguyễn trãi phố quận đống đa nam định |
|
sentences: |
|
- 49 /137 b. số34 ngõ123 ngách296 kim. mã. quậngõ đống. đấp nam. định |
|
- 14 /121 a so8 ngõ116 kim ma quận quan thanh xuân hai phòng |
|
- 41 /281 a số181 ngõ244 kim mã phố quận hai bà trưng tphố thái bình |
|
- source_sentence: 287 /179 a số104 phan văn trị quận long biên bắc ninh |
|
sentences: |
|
- 205 /161 a số117 kim mã quận quận hai bà trưng nam định |
|
- 295 /231 a, số125 ngõ284 nguyễn, trãi, quận, thanh, xuân, hải, phòng |
|
- 232 /206 c, so157 ngo223 ngach63 phồ, giai, phồng, quan, cau, giay, tphố, hung, |
|
yen |
|
- source_sentence: 2 71 /299 c. số212 phố. trầngõ hưng. đạo. quậngõ hồàngõ kiếm. hải. |
|
phòng |
|
sentences: |
|
- 214 /194 a, số20 đường, nguyễn, trãi, quận, cầu, giấy, thái, bình |
|
- 164 /123 c. số213 kim. mã. phố. quậngõ thanhuyện xuângõ bắc. ninh |
|
- 130 /185 a so63 ngo115 ngach279 le loi quan hai ba trung tphố ha noi |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy |
|
- cosine_accuracy_threshold |
|
- cosine_f1 |
|
- cosine_f1_threshold |
|
- cosine_precision |
|
- cosine_recall |
|
- cosine_ap |
|
- cosine_mcc |
|
model-index: |
|
- name: SentenceTransformer based on keepitreal/vietnamese-sbert |
|
results: |
|
- task: |
|
type: binary-classification |
|
name: Binary Classification |
|
dataset: |
|
name: address eval |
|
type: address-eval |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.998 |
|
name: Cosine Accuracy |
|
- type: cosine_accuracy_threshold |
|
value: 0.6475284695625305 |
|
name: Cosine Accuracy Threshold |
|
- type: cosine_f1 |
|
value: 0.998 |
|
name: Cosine F1 |
|
- type: cosine_f1_threshold |
|
value: 0.6475284695625305 |
|
name: Cosine F1 Threshold |
|
- type: cosine_precision |
|
value: 0.998 |
|
name: Cosine Precision |
|
- type: cosine_recall |
|
value: 0.998 |
|
name: Cosine Recall |
|
- type: cosine_ap |
|
value: 0.999976118968095 |
|
name: Cosine Ap |
|
- type: cosine_mcc |
|
value: 0.996 |
|
name: Cosine Mcc |
|
--- |
|
|
|
# SentenceTransformer based on keepitreal/vietnamese-sbert |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [keepitreal/vietnamese-sbert](https://huggingface.co/keepitreal/vietnamese-sbert). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [keepitreal/vietnamese-sbert](https://huggingface.co/keepitreal/vietnamese-sbert) <!-- at revision a9467ef2ef47caa6448edeabfd8e5e5ce0fa2a23 --> |
|
- **Maximum Sequence Length:** 256 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("Kao1412/Classification_Address_New") |
|
# Run inference |
|
sentences = [ |
|
'2 71 /299 c. số212 phố. trầngõ hưng. đạo. quậngõ hồàngõ kiếm. hải. phòng', |
|
'164 /123 c. số213 kim. mã. phố. quậngõ thanhuyện xuângõ bắc. ninh', |
|
'214 /194 a, số20 đường, nguyễn, trãi, quận, cầu, giấy, thái, bình', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Binary Classification |
|
|
|
* Dataset: `address-eval` |
|
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------------|:--------| |
|
| cosine_accuracy | 0.998 | |
|
| cosine_accuracy_threshold | 0.6475 | |
|
| cosine_f1 | 0.998 | |
|
| cosine_f1_threshold | 0.6475 | |
|
| cosine_precision | 0.998 | |
|
| cosine_recall | 0.998 | |
|
| **cosine_ap** | **1.0** | |
|
| cosine_mcc | 0.996 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 6,000 training samples |
|
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 14 tokens</li><li>mean: 24.55 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 24.3 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.48</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | label | |
|
|:--------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|:-----------------| |
|
| <code>41 /183 b số204 ngõ1 ngách48 xô viết nghệ tĩnh quận quận cầu giấy hà nội</code> | <code>41 /183 b số204 ngõ1 ngách48 xô viết nghệ tĩnh quận quận cầu giấy hà nội</code> | <code>1.0</code> | |
|
| <code>235 /121 c số119 ngõ74 nguyễn trãi quận hồàn kiếm tphố nam định</code> | <code>235 /121 c so119 ngo74 nguyễn trai quan hồan kiem tphố nam đinh</code> | <code>1.0</code> | |
|
| <code>26 /74 c số16 ngõ194 ngách106 điện biên phủ quận đống đa hưng yên</code> | <code>195 /93 b số240 ngõ241 ngách98 phố kim mã quận hai bà trưng thành phố hà nội</code> | <code>0.0</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 32 |
|
- `num_train_epochs`: 5 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 32 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 5 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | address-eval_cosine_ap | |
|
|:------:|:----:|:-------------:|:----------------------:| |
|
| 1.0 | 188 | - | 0.9999 | |
|
| 2.0 | 376 | - | 0.9999 | |
|
| 2.6596 | 500 | 0.0231 | 0.9999 | |
|
| 3.0 | 564 | - | 1.0000 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.11.12 |
|
- Sentence Transformers: 4.1.0 |
|
- Transformers: 4.52.3 |
|
- PyTorch: 2.6.0+cu124 |
|
- Accelerate: 1.7.0 |
|
- Datasets: 2.14.4 |
|
- Tokenizers: 0.21.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |