Kao1412 commited on
Commit
f246b82
·
verified ·
1 Parent(s): 6b0c1b3

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,409 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:6000
8
+ - loss:CosineSimilarityLoss
9
+ base_model: keepitreal/vietnamese-sbert
10
+ widget:
11
+ - source_sentence: 64 /161 c số92 phường linh trung quận quận tân bình long an
12
+ sentences:
13
+ - 179 /108 a số53 đường nguyễn văn cừ phường quận thanh xuân hà nội
14
+ - 184 /22 c số116 ngõ196 điện biên phủ quận đống đa hải phòng
15
+ - 64 /161 c số92 phường linh trung quận quận tân bình long an
16
+ - source_sentence: 164 /222 c, số291 kim, mã, quận, long, biên, hải, phòng
17
+ sentences:
18
+ - 282 /223 b số41 ngõ39 đường kim mã quận hồàn kiếm hải phòng
19
+ - 164 /222 c, số291 kim, mã, quận, long, biên, hải, phòng
20
+ - 136 /25 c. số43 hem108 đuong. phường. bengõ nghe. quangõ 3 vũng. tàu
21
+ - source_sentence: 168 /127 a số53 nguyễn trãi phố quận đống đa nam định
22
+ sentences:
23
+ - 49 /137 b. số34 ngõ123 ngách296 kim. mã. quậngõ đống. đấp nam. định
24
+ - 14 /121 a so8 ngõ116 kim ma quận quan thanh xuân hai phòng
25
+ - 41 /281 a số181 ngõ244 kim mã phố quận hai bà trưng tphố thái bình
26
+ - source_sentence: 287 /179 a số104 phan văn trị quận long biên bắc ninh
27
+ sentences:
28
+ - 205 /161 a số117 kim mã quận quận hai bà trưng nam định
29
+ - 295 /231 a, số125 ngõ284 nguyễn, trãi, quận, thanh, xuân, hải, phòng
30
+ - 232 /206 c, so157 ngo223 ngach63 phồ, giai, phồng, quan, cau, giay, tphố, hung,
31
+ yen
32
+ - source_sentence: 2 71 /299 c. số212 phố. trầngõ hưng. đạo. quậngõ hồàngõ kiếm. hải.
33
+ phòng
34
+ sentences:
35
+ - 214 /194 a, số20 đường, nguyễn, trãi, quận, cầu, giấy, thái, bình
36
+ - 164 /123 c. số213 kim. mã. phố. quậngõ thanhuyện xuângõ bắc. ninh
37
+ - 130 /185 a so63 ngo115 ngach279 le loi quan hai ba trung tphố ha noi
38
+ pipeline_tag: sentence-similarity
39
+ library_name: sentence-transformers
40
+ metrics:
41
+ - cosine_accuracy
42
+ - cosine_accuracy_threshold
43
+ - cosine_f1
44
+ - cosine_f1_threshold
45
+ - cosine_precision
46
+ - cosine_recall
47
+ - cosine_ap
48
+ - cosine_mcc
49
+ model-index:
50
+ - name: SentenceTransformer based on keepitreal/vietnamese-sbert
51
+ results:
52
+ - task:
53
+ type: binary-classification
54
+ name: Binary Classification
55
+ dataset:
56
+ name: address eval
57
+ type: address-eval
58
+ metrics:
59
+ - type: cosine_accuracy
60
+ value: 0.998
61
+ name: Cosine Accuracy
62
+ - type: cosine_accuracy_threshold
63
+ value: 0.6475284695625305
64
+ name: Cosine Accuracy Threshold
65
+ - type: cosine_f1
66
+ value: 0.998
67
+ name: Cosine F1
68
+ - type: cosine_f1_threshold
69
+ value: 0.6475284695625305
70
+ name: Cosine F1 Threshold
71
+ - type: cosine_precision
72
+ value: 0.998
73
+ name: Cosine Precision
74
+ - type: cosine_recall
75
+ value: 0.998
76
+ name: Cosine Recall
77
+ - type: cosine_ap
78
+ value: 0.999976118968095
79
+ name: Cosine Ap
80
+ - type: cosine_mcc
81
+ value: 0.996
82
+ name: Cosine Mcc
83
+ ---
84
+
85
+ # SentenceTransformer based on keepitreal/vietnamese-sbert
86
+
87
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [keepitreal/vietnamese-sbert](https://huggingface.co/keepitreal/vietnamese-sbert). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
88
+
89
+ ## Model Details
90
+
91
+ ### Model Description
92
+ - **Model Type:** Sentence Transformer
93
+ - **Base model:** [keepitreal/vietnamese-sbert](https://huggingface.co/keepitreal/vietnamese-sbert) <!-- at revision a9467ef2ef47caa6448edeabfd8e5e5ce0fa2a23 -->
94
+ - **Maximum Sequence Length:** 256 tokens
95
+ - **Output Dimensionality:** 768 dimensions
96
+ - **Similarity Function:** Cosine Similarity
97
+ <!-- - **Training Dataset:** Unknown -->
98
+ <!-- - **Language:** Unknown -->
99
+ <!-- - **License:** Unknown -->
100
+
101
+ ### Model Sources
102
+
103
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
104
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
105
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
106
+
107
+ ### Full Model Architecture
108
+
109
+ ```
110
+ SentenceTransformer(
111
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
112
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
113
+ )
114
+ ```
115
+
116
+ ## Usage
117
+
118
+ ### Direct Usage (Sentence Transformers)
119
+
120
+ First install the Sentence Transformers library:
121
+
122
+ ```bash
123
+ pip install -U sentence-transformers
124
+ ```
125
+
126
+ Then you can load this model and run inference.
127
+ ```python
128
+ from sentence_transformers import SentenceTransformer
129
+
130
+ # Download from the 🤗 Hub
131
+ model = SentenceTransformer("Kao1412/Classification_Address_New")
132
+ # Run inference
133
+ sentences = [
134
+ '2 71 /299 c. số212 phố. trầngõ hưng. đạo. quậngõ hồàngõ kiếm. hải. phòng',
135
+ '164 /123 c. số213 kim. mã. phố. quậngõ thanhuyện xuângõ bắc. ninh',
136
+ '214 /194 a, số20 đường, nguyễn, trãi, quận, cầu, giấy, thái, bình',
137
+ ]
138
+ embeddings = model.encode(sentences)
139
+ print(embeddings.shape)
140
+ # [3, 768]
141
+
142
+ # Get the similarity scores for the embeddings
143
+ similarities = model.similarity(embeddings, embeddings)
144
+ print(similarities.shape)
145
+ # [3, 3]
146
+ ```
147
+
148
+ <!--
149
+ ### Direct Usage (Transformers)
150
+
151
+ <details><summary>Click to see the direct usage in Transformers</summary>
152
+
153
+ </details>
154
+ -->
155
+
156
+ <!--
157
+ ### Downstream Usage (Sentence Transformers)
158
+
159
+ You can finetune this model on your own dataset.
160
+
161
+ <details><summary>Click to expand</summary>
162
+
163
+ </details>
164
+ -->
165
+
166
+ <!--
167
+ ### Out-of-Scope Use
168
+
169
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
170
+ -->
171
+
172
+ ## Evaluation
173
+
174
+ ### Metrics
175
+
176
+ #### Binary Classification
177
+
178
+ * Dataset: `address-eval`
179
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
180
+
181
+ | Metric | Value |
182
+ |:--------------------------|:--------|
183
+ | cosine_accuracy | 0.998 |
184
+ | cosine_accuracy_threshold | 0.6475 |
185
+ | cosine_f1 | 0.998 |
186
+ | cosine_f1_threshold | 0.6475 |
187
+ | cosine_precision | 0.998 |
188
+ | cosine_recall | 0.998 |
189
+ | **cosine_ap** | **1.0** |
190
+ | cosine_mcc | 0.996 |
191
+
192
+ <!--
193
+ ## Bias, Risks and Limitations
194
+
195
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
196
+ -->
197
+
198
+ <!--
199
+ ### Recommendations
200
+
201
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
202
+ -->
203
+
204
+ ## Training Details
205
+
206
+ ### Training Dataset
207
+
208
+ #### Unnamed Dataset
209
+
210
+ * Size: 6,000 training samples
211
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
212
+ * Approximate statistics based on the first 1000 samples:
213
+ | | sentence_0 | sentence_1 | label |
214
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
215
+ | type | string | string | float |
216
+ | details | <ul><li>min: 14 tokens</li><li>mean: 24.55 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 24.3 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.48</li><li>max: 1.0</li></ul> |
217
+ * Samples:
218
+ | sentence_0 | sentence_1 | label |
219
+ |:--------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|:-----------------|
220
+ | <code>41 /183 b số204 ngõ1 ngách48 xô viết nghệ tĩnh quận quận cầu giấy hà nội</code> | <code>41 /183 b số204 ngõ1 ngách48 xô viết nghệ tĩnh quận quận cầu giấy hà nội</code> | <code>1.0</code> |
221
+ | <code>235 /121 c số119 ngõ74 nguyễn trãi quận hồàn kiếm tphố nam định</code> | <code>235 /121 c so119 ngo74 nguyễn trai quan hồan kiem tphố nam đinh</code> | <code>1.0</code> |
222
+ | <code>26 /74 c số16 ngõ194 ngách106 điện biên phủ quận đống đa hưng yên</code> | <code>195 /93 b số240 ngõ241 ngách98 phố kim mã quận hai bà trưng thành phố hà nội</code> | <code>0.0</code> |
223
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
224
+ ```json
225
+ {
226
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
227
+ }
228
+ ```
229
+
230
+ ### Training Hyperparameters
231
+ #### Non-Default Hyperparameters
232
+
233
+ - `eval_strategy`: steps
234
+ - `per_device_train_batch_size`: 32
235
+ - `per_device_eval_batch_size`: 32
236
+ - `num_train_epochs`: 5
237
+ - `multi_dataset_batch_sampler`: round_robin
238
+
239
+ #### All Hyperparameters
240
+ <details><summary>Click to expand</summary>
241
+
242
+ - `overwrite_output_dir`: False
243
+ - `do_predict`: False
244
+ - `eval_strategy`: steps
245
+ - `prediction_loss_only`: True
246
+ - `per_device_train_batch_size`: 32
247
+ - `per_device_eval_batch_size`: 32
248
+ - `per_gpu_train_batch_size`: None
249
+ - `per_gpu_eval_batch_size`: None
250
+ - `gradient_accumulation_steps`: 1
251
+ - `eval_accumulation_steps`: None
252
+ - `torch_empty_cache_steps`: None
253
+ - `learning_rate`: 5e-05
254
+ - `weight_decay`: 0.0
255
+ - `adam_beta1`: 0.9
256
+ - `adam_beta2`: 0.999
257
+ - `adam_epsilon`: 1e-08
258
+ - `max_grad_norm`: 1
259
+ - `num_train_epochs`: 5
260
+ - `max_steps`: -1
261
+ - `lr_scheduler_type`: linear
262
+ - `lr_scheduler_kwargs`: {}
263
+ - `warmup_ratio`: 0.0
264
+ - `warmup_steps`: 0
265
+ - `log_level`: passive
266
+ - `log_level_replica`: warning
267
+ - `log_on_each_node`: True
268
+ - `logging_nan_inf_filter`: True
269
+ - `save_safetensors`: True
270
+ - `save_on_each_node`: False
271
+ - `save_only_model`: False
272
+ - `restore_callback_states_from_checkpoint`: False
273
+ - `no_cuda`: False
274
+ - `use_cpu`: False
275
+ - `use_mps_device`: False
276
+ - `seed`: 42
277
+ - `data_seed`: None
278
+ - `jit_mode_eval`: False
279
+ - `use_ipex`: False
280
+ - `bf16`: False
281
+ - `fp16`: False
282
+ - `fp16_opt_level`: O1
283
+ - `half_precision_backend`: auto
284
+ - `bf16_full_eval`: False
285
+ - `fp16_full_eval`: False
286
+ - `tf32`: None
287
+ - `local_rank`: 0
288
+ - `ddp_backend`: None
289
+ - `tpu_num_cores`: None
290
+ - `tpu_metrics_debug`: False
291
+ - `debug`: []
292
+ - `dataloader_drop_last`: False
293
+ - `dataloader_num_workers`: 0
294
+ - `dataloader_prefetch_factor`: None
295
+ - `past_index`: -1
296
+ - `disable_tqdm`: False
297
+ - `remove_unused_columns`: True
298
+ - `label_names`: None
299
+ - `load_best_model_at_end`: False
300
+ - `ignore_data_skip`: False
301
+ - `fsdp`: []
302
+ - `fsdp_min_num_params`: 0
303
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
304
+ - `fsdp_transformer_layer_cls_to_wrap`: None
305
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
306
+ - `deepspeed`: None
307
+ - `label_smoothing_factor`: 0.0
308
+ - `optim`: adamw_torch
309
+ - `optim_args`: None
310
+ - `adafactor`: False
311
+ - `group_by_length`: False
312
+ - `length_column_name`: length
313
+ - `ddp_find_unused_parameters`: None
314
+ - `ddp_bucket_cap_mb`: None
315
+ - `ddp_broadcast_buffers`: False
316
+ - `dataloader_pin_memory`: True
317
+ - `dataloader_persistent_workers`: False
318
+ - `skip_memory_metrics`: True
319
+ - `use_legacy_prediction_loop`: False
320
+ - `push_to_hub`: False
321
+ - `resume_from_checkpoint`: None
322
+ - `hub_model_id`: None
323
+ - `hub_strategy`: every_save
324
+ - `hub_private_repo`: None
325
+ - `hub_always_push`: False
326
+ - `gradient_checkpointing`: False
327
+ - `gradient_checkpointing_kwargs`: None
328
+ - `include_inputs_for_metrics`: False
329
+ - `include_for_metrics`: []
330
+ - `eval_do_concat_batches`: True
331
+ - `fp16_backend`: auto
332
+ - `push_to_hub_model_id`: None
333
+ - `push_to_hub_organization`: None
334
+ - `mp_parameters`:
335
+ - `auto_find_batch_size`: False
336
+ - `full_determinism`: False
337
+ - `torchdynamo`: None
338
+ - `ray_scope`: last
339
+ - `ddp_timeout`: 1800
340
+ - `torch_compile`: False
341
+ - `torch_compile_backend`: None
342
+ - `torch_compile_mode`: None
343
+ - `include_tokens_per_second`: False
344
+ - `include_num_input_tokens_seen`: False
345
+ - `neftune_noise_alpha`: None
346
+ - `optim_target_modules`: None
347
+ - `batch_eval_metrics`: False
348
+ - `eval_on_start`: False
349
+ - `use_liger_kernel`: False
350
+ - `eval_use_gather_object`: False
351
+ - `average_tokens_across_devices`: False
352
+ - `prompts`: None
353
+ - `batch_sampler`: batch_sampler
354
+ - `multi_dataset_batch_sampler`: round_robin
355
+
356
+ </details>
357
+
358
+ ### Training Logs
359
+ | Epoch | Step | Training Loss | address-eval_cosine_ap |
360
+ |:------:|:----:|:-------------:|:----------------------:|
361
+ | 1.0 | 188 | - | 0.9999 |
362
+ | 2.0 | 376 | - | 0.9999 |
363
+ | 2.6596 | 500 | 0.0231 | 0.9999 |
364
+ | 3.0 | 564 | - | 1.0000 |
365
+
366
+
367
+ ### Framework Versions
368
+ - Python: 3.11.12
369
+ - Sentence Transformers: 4.1.0
370
+ - Transformers: 4.52.3
371
+ - PyTorch: 2.6.0+cu124
372
+ - Accelerate: 1.7.0
373
+ - Datasets: 2.14.4
374
+ - Tokenizers: 0.21.1
375
+
376
+ ## Citation
377
+
378
+ ### BibTeX
379
+
380
+ #### Sentence Transformers
381
+ ```bibtex
382
+ @inproceedings{reimers-2019-sentence-bert,
383
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
384
+ author = "Reimers, Nils and Gurevych, Iryna",
385
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
386
+ month = "11",
387
+ year = "2019",
388
+ publisher = "Association for Computational Linguistics",
389
+ url = "https://arxiv.org/abs/1908.10084",
390
+ }
391
+ ```
392
+
393
+ <!--
394
+ ## Glossary
395
+
396
+ *Clearly define terms in order to be accessible across audiences.*
397
+ -->
398
+
399
+ <!--
400
+ ## Model Card Authors
401
+
402
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
403
+ -->
404
+
405
+ <!--
406
+ ## Model Card Contact
407
+
408
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
409
+ -->
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<mask>": 64000
3
+ }
bpe.codes ADDED
The diff for this file is too large to render. See raw diff
 
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "RobertaModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "classifier_dropout": null,
8
+ "eos_token_id": 2,
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 258,
17
+ "model_type": "roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "tokenizer_class": "PhobertTokenizer",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.52.3",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 64001
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.52.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:749f54279ef750434b7351be20868d2728dd2d64cc33506d25a7796bc5c21638
3
+ size 540015464
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "64000": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 256,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "tokenizer_class": "PhobertTokenizer",
54
+ "unk_token": "<unk>"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff