|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: uwb_atcc |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# uwb_atcc |
|
|
|
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6191 |
|
- Accuracy: 0.9103 |
|
- Precision: 0.9239 |
|
- Recall: 0.9161 |
|
- F1: 0.9200 |
|
- Report: precision recall f1-score support |
|
|
|
0 0.89 0.90 0.90 463 |
|
1 0.92 0.92 0.92 596 |
|
|
|
accuracy 0.91 1059 |
|
macro avg 0.91 0.91 0.91 1059 |
|
weighted avg 0.91 0.91 0.91 1059 |
|
|
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 3000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Report | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| |
|
| No log | 3.36 | 500 | 0.2346 | 0.9207 | 0.9197 | 0.9413 | 0.9303 | precision recall f1-score support |
|
|
|
0 0.92 0.89 0.91 463 |
|
1 0.92 0.94 0.93 596 |
|
|
|
accuracy 0.92 1059 |
|
macro avg 0.92 0.92 0.92 1059 |
|
weighted avg 0.92 0.92 0.92 1059 |
|
| |
|
| 0.2212 | 6.71 | 1000 | 0.3161 | 0.9046 | 0.9260 | 0.9027 | 0.9142 | precision recall f1-score support |
|
|
|
0 0.88 0.91 0.89 463 |
|
1 0.93 0.90 0.91 596 |
|
|
|
accuracy 0.90 1059 |
|
macro avg 0.90 0.90 0.90 1059 |
|
weighted avg 0.91 0.90 0.90 1059 |
|
| |
|
| 0.2212 | 10.07 | 1500 | 0.4337 | 0.9065 | 0.9191 | 0.9144 | 0.9167 | precision recall f1-score support |
|
|
|
0 0.89 0.90 0.89 463 |
|
1 0.92 0.91 0.92 596 |
|
|
|
accuracy 0.91 1059 |
|
macro avg 0.90 0.91 0.91 1059 |
|
weighted avg 0.91 0.91 0.91 1059 |
|
| |
|
| 0.0651 | 13.42 | 2000 | 0.4743 | 0.9178 | 0.9249 | 0.9295 | 0.9272 | precision recall f1-score support |
|
|
|
0 0.91 0.90 0.91 463 |
|
1 0.92 0.93 0.93 596 |
|
|
|
accuracy 0.92 1059 |
|
macro avg 0.92 0.92 0.92 1059 |
|
weighted avg 0.92 0.92 0.92 1059 |
|
| |
|
| 0.0651 | 16.78 | 2500 | 0.5538 | 0.9103 | 0.9196 | 0.9211 | 0.9204 | precision recall f1-score support |
|
|
|
0 0.90 0.90 0.90 463 |
|
1 0.92 0.92 0.92 596 |
|
|
|
accuracy 0.91 1059 |
|
macro avg 0.91 0.91 0.91 1059 |
|
weighted avg 0.91 0.91 0.91 1059 |
|
| |
|
| 0.0296 | 20.13 | 3000 | 0.6191 | 0.9103 | 0.9239 | 0.9161 | 0.9200 | precision recall f1-score support |
|
|
|
0 0.89 0.90 0.90 463 |
|
1 0.92 0.92 0.92 596 |
|
|
|
accuracy 0.91 1059 |
|
macro avg 0.91 0.91 0.91 1059 |
|
weighted avg 0.91 0.91 0.91 1059 |
|
| |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.24.0 |
|
- Pytorch 1.13.0+cu117 |
|
- Datasets 2.7.0 |
|
- Tokenizers 0.13.2 |
|
|