Jzuluaga's picture
updating the repo with the fine-tuned model
a9b258a
|
raw
history blame
5.01 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: uwb_atcc
    results: []

uwb_atcc

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6191

  • Accuracy: 0.9103

  • Precision: 0.9239

  • Recall: 0.9161

  • F1: 0.9200

  • Report: precision recall f1-score support

         0       0.89      0.90      0.90       463
         1       0.92      0.92      0.92       596
    

    accuracy 0.91 1059 macro avg 0.91 0.91 0.91 1059

weighted avg 0.91 0.91 0.91 1059

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 3000

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Report
No log 3.36 500 0.2346 0.9207 0.9197 0.9413 0.9303 precision recall f1-score support
       0       0.92      0.89      0.91       463
       1       0.92      0.94      0.93       596

accuracy                           0.92      1059

macro avg 0.92 0.92 0.92 1059 weighted avg 0.92 0.92 0.92 1059 | | 0.2212 | 6.71 | 1000 | 0.3161 | 0.9046 | 0.9260 | 0.9027 | 0.9142 | precision recall f1-score support

       0       0.88      0.91      0.89       463
       1       0.93      0.90      0.91       596

accuracy                           0.90      1059

macro avg 0.90 0.90 0.90 1059 weighted avg 0.91 0.90 0.90 1059 | | 0.2212 | 10.07 | 1500 | 0.4337 | 0.9065 | 0.9191 | 0.9144 | 0.9167 | precision recall f1-score support

       0       0.89      0.90      0.89       463
       1       0.92      0.91      0.92       596

accuracy                           0.91      1059

macro avg 0.90 0.91 0.91 1059 weighted avg 0.91 0.91 0.91 1059 | | 0.0651 | 13.42 | 2000 | 0.4743 | 0.9178 | 0.9249 | 0.9295 | 0.9272 | precision recall f1-score support

       0       0.91      0.90      0.91       463
       1       0.92      0.93      0.93       596

accuracy                           0.92      1059

macro avg 0.92 0.92 0.92 1059 weighted avg 0.92 0.92 0.92 1059 | | 0.0651 | 16.78 | 2500 | 0.5538 | 0.9103 | 0.9196 | 0.9211 | 0.9204 | precision recall f1-score support

       0       0.90      0.90      0.90       463
       1       0.92      0.92      0.92       596

accuracy                           0.91      1059

macro avg 0.91 0.91 0.91 1059 weighted avg 0.91 0.91 0.91 1059 | | 0.0296 | 20.13 | 3000 | 0.6191 | 0.9103 | 0.9239 | 0.9161 | 0.9200 | precision recall f1-score support

       0       0.89      0.90      0.90       463
       1       0.92      0.92      0.92       596

accuracy                           0.91      1059

macro avg 0.91 0.91 0.91 1059 weighted avg 0.91 0.91 0.91 1059 |

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.0
  • Tokenizers 0.13.2