Jsoo's picture
Update README.md
378d000 verified
---
language:
- en
- ko
license: other
tags:
- facebook
- meta
- pytorch
- llama
- llama-3
- llama-3-ko
pipeline_tag: text-generation
license_name: llama3
license_link: LICENSE
---
# Model Card for Model ID
## Model Details
Llama-3-Open-Ko-8B model is continued pretrained language model based on Llama-3-8B.
This model is trained fully with publicily available resource, with 60GB+ of deduplicated texts.
With the new Llama-3 tokenizer, the pretraining conducted with 17.7B+ tokens, which slightly more than Korean tokenizer(Llama-2-Ko tokenizer).
**Sample usage**
```
from transformers import pipeline
import torch
pipe = pipeline(
task="text-generation",
model=model,
tokenizer=tokenizer,
model_kwargs={"torch_dtype": torch.bfloat16},
truncation=True
)
def extract_response_llama3(question):
messages = [
{"role": "system", "content": ""},
{"role": "user", "content": question},
]
prompt = pipe.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
pipe.tokenizer.eos_token_id,
pipe.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipe(
prompt,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.1,
top_p=0.9,
num_return_sequences=1
)
return outputs[0]['generated_text'].split('\n')[-1]
question = "์˜ˆ์‚ฐ์„ ๋ถ„๋ฐฐํ•  ๋•Œ ์‚ฌ์—…์˜ ์šฐ์„  ์ˆœ์œ„๋ฅผ ์ •ํ•ด์„œ ์ฐจ๋“ฑ ์ง€์›ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๋ญ๋ผ๊ณ  ํ•˜์ง€"
response = extract_response_llama3(question)
print(response)
question = "๋ฏธ์„ธ๋จผ์ง€ ์ƒ์„ฑ๋ฌผ์งˆ์˜ ๋ฐฐ์ถœ์„ ์ €๊ฐํ•˜๊ณ  ์ข…ํ•ฉ์ ์œผ๋กœ ๊ด€๋ฆฌํ•˜๊ธฐ ์œ„ํ•œ ๋ฒ•์„ ์–ด๋””์„œ ์ œ์ •ํ–ˆ๋‹ˆ"
response = extract_response_llama3(question)
print(response)
question = "์–ด๋–ค ์žฅ์†Œ์˜ ๋Œ€๊ธฐ์˜ค์—ผ์„ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•œ ์ •์ฑ…์˜ ๋ฒ•์  ๊ทผ๊ฑฐ๊ฐ€ ํŠน๋ณ„๋ฒ•์˜ ์ œ์ •์œผ๋กœ ์ค€๋น„๋˜์—ˆ์ง€"
response = extract_response_llama3(question)
print(response)
```
**Sample Output**
```
์„ ํƒ๊ณผ ์ง‘์ค‘
ํ™˜๊ฒฝ๋ถ€
ํ•ญ๋งŒ
```