File size: 2,204 Bytes
ff1d73d aa196a1 65a709c ff1d73d 65a709c ff1d73d 65a709c ff1d73d 65a709c ff1d73d 65a709c ff1d73d 33a64f6 83e8a7a 33a64f6 ff1d73d 65a709c ff1d73d 378d000 65a709c ff1d73d 65a709c ff1d73d 65a709c 378d000 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
language:
- en
- ko
license: other
tags:
- facebook
- meta
- pytorch
- llama
- llama-3
- llama-3-ko
pipeline_tag: text-generation
license_name: llama3
license_link: LICENSE
---
# Model Card for Model ID
## Model Details
Llama-3-Open-Ko-8B model is continued pretrained language model based on Llama-3-8B.
This model is trained fully with publicily available resource, with 60GB+ of deduplicated texts.
With the new Llama-3 tokenizer, the pretraining conducted with 17.7B+ tokens, which slightly more than Korean tokenizer(Llama-2-Ko tokenizer).
**Sample usage**
```
from transformers import pipeline
import torch
pipe = pipeline(
task="text-generation",
model=model,
tokenizer=tokenizer,
model_kwargs={"torch_dtype": torch.bfloat16},
truncation=True
)
def extract_response_llama3(question):
messages = [
{"role": "system", "content": ""},
{"role": "user", "content": question},
]
prompt = pipe.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
pipe.tokenizer.eos_token_id,
pipe.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipe(
prompt,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.1,
top_p=0.9,
num_return_sequences=1
)
return outputs[0]['generated_text'].split('\n')[-1]
question = "์์ฐ์ ๋ถ๋ฐฐํ ๋ ์ฌ์
์ ์ฐ์ ์์๋ฅผ ์ ํด์ ์ฐจ๋ฑ ์ง์ํ๋ ๋ฐฉ๋ฒ์ ๋ญ๋ผ๊ณ ํ์ง"
response = extract_response_llama3(question)
print(response)
question = "๋ฏธ์ธ๋จผ์ง ์์ฑ๋ฌผ์ง์ ๋ฐฐ์ถ์ ์ ๊ฐํ๊ณ ์ข
ํฉ์ ์ผ๋ก ๊ด๋ฆฌํ๊ธฐ ์ํ ๋ฒ์ ์ด๋์ ์ ์ ํ๋"
response = extract_response_llama3(question)
print(response)
question = "์ด๋ค ์ฅ์์ ๋๊ธฐ์ค์ผ์ ๋ฐฉ์งํ๊ธฐ ์ํ ์ ์ฑ
์ ๋ฒ์ ๊ทผ๊ฑฐ๊ฐ ํน๋ณ๋ฒ์ ์ ์ ์ผ๋ก ์ค๋น๋์์ง"
response = extract_response_llama3(question)
print(response)
```
**Sample Output**
```
์ ํ๊ณผ ์ง์ค
ํ๊ฒฝ๋ถ
ํญ๋ง
```
|