JamesJenkins's picture
Update README.md
03af198 verified
metadata
license: bsd-3-clause
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
  - f1
model-index:
  - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.89
          - name: F1
            type: f1
            value: 0.89
pipeline_tag: audio-classification

ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan

This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5658
  • Accuracy: 0.87
  • F1: 0.87

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 2024
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.8357 0.9956 56 0.6582 0.82 0.82
0.4742 1.9911 112 0.6527 0.81 0.81
0.3344 2.9867 168 0.9048 0.76 0.76
0.0659 4.0 225 0.6998 0.84 0.8400
0.0966 4.9956 281 0.6737 0.83 0.83
0.0026 5.9911 337 0.5133 0.89 0.89
0.0038 6.9867 393 0.5704 0.86 0.8600
0.0005 8.0 450 0.5722 0.86 0.8600
0.0003 8.9956 506 0.5632 0.87 0.87
0.0003 9.9556 560 0.5658 0.87 0.87

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1