ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.5658
- Accuracy: 0.87
- F1: 0.87
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 2024
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.8357 | 0.9956 | 56 | 0.6582 | 0.82 | 0.82 |
0.4742 | 1.9911 | 112 | 0.6527 | 0.81 | 0.81 |
0.3344 | 2.9867 | 168 | 0.9048 | 0.76 | 0.76 |
0.0659 | 4.0 | 225 | 0.6998 | 0.84 | 0.8400 |
0.0966 | 4.9956 | 281 | 0.6737 | 0.83 | 0.83 |
0.0026 | 5.9911 | 337 | 0.5133 | 0.89 | 0.89 |
0.0038 | 6.9867 | 393 | 0.5704 | 0.86 | 0.8600 |
0.0005 | 8.0 | 450 | 0.5722 | 0.86 | 0.8600 |
0.0003 | 8.9956 | 506 | 0.5632 | 0.87 | 0.87 |
0.0003 | 9.9556 | 560 | 0.5658 | 0.87 | 0.87 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Model tree for JamesJenkins/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
Base model
MIT/ast-finetuned-audioset-10-10-0.4593Dataset used to train JamesJenkins/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
Evaluation results
- Accuracy on GTZANself-reported0.890
- F1 on GTZANself-reported0.890