metadata
license: bsd-3-clause
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
- f1
model-index:
- name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.86
- name: F1
type: f1
value: 0.8599999999999999
ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.7149
- Accuracy: 0.86
- F1: 0.8600
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 2024
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.6891 | 0.9956 | 112 | 0.6422 | 0.76 | 0.76 |
0.7267 | 2.0 | 225 | 0.8163 | 0.78 | 0.78 |
0.7077 | 2.9956 | 337 | 0.7802 | 0.8 | 0.8000 |
0.1884 | 4.0 | 450 | 0.6157 | 0.87 | 0.87 |
0.0209 | 4.9956 | 562 | 0.7885 | 0.84 | 0.8400 |
0.117 | 6.0 | 675 | 0.6744 | 0.85 | 0.85 |
0.0098 | 6.9956 | 787 | 0.6213 | 0.85 | 0.85 |
0.0002 | 8.0 | 900 | 1.0599 | 0.82 | 0.82 |
0.0001 | 8.9956 | 1012 | 0.7052 | 0.86 | 0.8600 |
0.0001 | 10.0 | 1125 | 0.6891 | 0.85 | 0.85 |
0.0001 | 10.9956 | 1237 | 0.6718 | 0.86 | 0.8600 |
0.0001 | 12.0 | 1350 | 0.6712 | 0.85 | 0.85 |
0.0001 | 12.9956 | 1462 | 0.6942 | 0.86 | 0.8600 |
0.0001 | 14.0 | 1575 | 0.7002 | 0.86 | 0.8600 |
0.0176 | 14.9956 | 1687 | 0.7053 | 0.86 | 0.8600 |
0.0001 | 16.0 | 1800 | 0.7140 | 0.86 | 0.8600 |
0.0001 | 16.9956 | 1912 | 0.7089 | 0.86 | 0.8600 |
0.0 | 18.0 | 2025 | 0.7120 | 0.86 | 0.8600 |
0.0628 | 18.9956 | 2137 | 0.7162 | 0.86 | 0.8600 |
0.0037 | 19.9111 | 2240 | 0.7149 | 0.86 | 0.8600 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1