metadata
license: apache-2.0
tags:
- int8
- Intel® Neural Compressor
- neural-compressor
- PostTrainingStatic
datasets:
- squad
metrics:
- f1
INT8 BERT base uncased finetuned on Squad
Post-training static quantization
This is an INT8 PyTorch model quantized with Intel® Neural Compressor.
The original fp32 model comes from the fine-tuned model jimypbr/bert-base-uncased-squad.
The calibration dataloader is the train dataloader. The default calibration sampling size 300 isn't divisible exactly by batch size 8, so the real sampling size is 304.
The linear modules bert.encoder.layer.2.intermediate.dense, bert.encoder.layer.4.intermediate.dense, bert.encoder.layer.9.output.dense, bert.encoder.layer.10.output.dense fall back to fp32 to meet the 1% relative accuracy loss.
Test result
INT8 | FP32 | |
---|---|---|
Accuracy (eval-f1) | 87.3006 | 88.1030 |
Model size (MB) | 139 | 436 |
Load with Intel® Neural Compressor:
from optimum.intel import INCModelForQuestionAnswering
model_id = "Intel/bert-base-uncased-squad-int8-static"
int8_model = INCModelForQuestionAnswering.from_pretrained(model_id)