File size: 1,275 Bytes
21d4313 de75d12 8715481 de75d12 21d4313 de75d12 2018193 de75d12 01a8f51 de75d12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
---
license: apache-2.0
tags:
- int8
- Intel® Neural Compressor
- neural-compressor
- PostTrainingStatic
datasets:
- squad
metrics:
- f1
---
# INT8 BERT base uncased finetuned on Squad
### Post-training static quantization
This is an INT8 PyTorch model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor).
The original fp32 model comes from the fine-tuned model [jimypbr/bert-base-uncased-squad](https://huggingface.co/jimypbr/bert-base-uncased-squad).
The calibration dataloader is the train dataloader. The default calibration sampling size 300 isn't divisible exactly by batch size 8, so the real sampling size is 304.
The linear modules **bert.encoder.layer.2.intermediate.dense**, **bert.encoder.layer.4.intermediate.dense**, **bert.encoder.layer.9.output.dense**, **bert.encoder.layer.10.output.dense** fall back to fp32 to meet the 1% relative accuracy loss.
### Test result
| |INT8|FP32|
|---|:---:|:---:|
| **Accuracy (eval-f1)** |87.3006|88.1030|
| **Model size (MB)** |139|436|
### Load with Intel® Neural Compressor:
```python
from optimum.intel import INCModelForQuestionAnswering
model_id = "Intel/bert-base-uncased-squad-int8-static"
int8_model = INCModelForQuestionAnswering.from_pretrained(model_id)
```
|