whisper-medium-hi / README.md
Illuminati-014's picture
End of training
18f4536 verified
metadata
library_name: transformers
language:
  - hi
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: 'Whisper Medium Hi - Illuminati014 '
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common_voice_modified
          type: mozilla-foundation/common_voice_11_0
          config: hi
          split: None
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 31.030015115525806

Whisper Medium Hi - Illuminati014

This model is a fine-tuned version of openai/whisper-medium on the Common_voice_modified dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5733
  • Wer: 31.0300

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0087 12.1951 1000 0.4534 32.1961
0.0004 24.3902 2000 0.5305 31.3755
0.0001 36.5854 3000 0.5546 30.9652
0.0001 48.7805 4000 0.5733 31.0300

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0