--- library_name: transformers language: - hi license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: 'Whisper Medium Hi - Illuminati014 ' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common_voice_modified type: mozilla-foundation/common_voice_11_0 config: hi split: None args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 31.030015115525806 --- # Whisper Medium Hi - Illuminati014 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common_voice_modified dataset. It achieves the following results on the evaluation set: - Loss: 0.5733 - Wer: 31.0300 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0087 | 12.1951 | 1000 | 0.4534 | 32.1961 | | 0.0004 | 24.3902 | 2000 | 0.5305 | 31.3755 | | 0.0001 | 36.5854 | 3000 | 0.5546 | 30.9652 | | 0.0001 | 48.7805 | 4000 | 0.5733 | 31.0300 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0