metadata
license: etalab-2.0
pipeline_tag: image-segmentation
tags:
- semantic segmentation
- pytorch
- landcover
library_name: pytorch
model-index:
- name: FLAIR-HUB_LPIS-J_swinbase-upernet
results:
- task:
type: semantic-segmentation
dataset:
name: IGNF/FLAIR-HUB/
type: earth-observation-dataset
metrics:
- type: mIoU
value: 32.349
name: mIoU
- type: OA
value: 87.967
name: Overall Accuracy
- type: IoU
value: 83.86
name: IoU building
- type: IoU
value: 78.38
name: IoU greenhouse
- type: IoU
value: 61.59
name: IoU swimming pool
- type: IoU
value: 61.59
name: IoU impervious surface
- type: IoU
value: 57.17
name: IoU pervious surface
- type: IoU
value: 62.94
name: IoU bare soil
- type: IoU
value: 90.35
name: IoU water
- type: IoU
value: 63.38
name: IoU snow
- type: IoU
value: 54.34
name: IoU herbaceous vegetation
- type: IoU
value: 57.14
name: IoU agricultural land
- type: IoU
value: 34.85
name: IoU plowed land
- type: IoU
value: 44.552
name: IoU vineyard
- type: IoU
value: 71.73
name: IoU deciduous
- type: IoU
value: 62.6
name: IoU coniferous
- type: IoU
value: 30.19
name: IoU brushwood
🌐 FLAIR-HUB Model Collection
- Trained on: FLAIR-HUB dataset 🔗
- Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
- Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
- Decoders: UNet, UPerNet
- Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
- Class nomenclature: 15 classes for LC, 23 classes for LPIS
🔍 Model: FLAIR-HUB_LPIS-J_swinbase-upernet
- Encoder: swin_base_patch4_window12_384
- Decoder: upernet
- Metrics:
- Params.: 186.9
- Code: GitHub
General Informations
- Contact: [email protected]
- Code repository: https://github.com/IGNF/FLAIR-HUB
- Paper: https://arxiv.org/abs/2506.07080
- Developed by: IGN
- Compute infrastructure:
- software: python, pytorch-lightning
- hardware: HPC/AI resources provided by GENCI-IDRIS
- License: Etalab 2.0
Training Config Hyperparameters
- Model architecture: swin_base_patch4_window12_384-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
- default: 1.0
- masked classes: [clear cut, ligneous, mixed, other] → weight = 0
- Input channels:
- AERIAL_RGBI: [4, 1, 2]
- SPOT_RGBI: [4, 1, 2]
- SENTINEL2_TS: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
- SENTINEL1-ASC_TS: [1, 2]
- SENTINEL1-DESC_TS: [1, 2]
- Input normalization (custom):
- AERIAL_RGBI:
mean: [106.59, 105.66, 111.35]
std: [39.78, 52.23, 45.62]
- SPOT_RGBI:
mean: [1137.03, 433.26, 508.75]
std: [543.11, 312.76, 284.61]
Training Data
- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700

Training Logging

Metrics
Metric | Value |
---|---|
mIoU | 32.35% |
Overall Accuracy | 87.97% |
F-score | 43.04% |
Precision | 50.96% |
Recall | 42.60% |
Class | IoU (%) | F-score (%) | Precision (%) | Recall (%) |
---|---|---|---|---|
grasses | 52.02 | 68.44 | 73.20 | 64.26 |
wheat | 57.45 | 72.97 | 64.92 | 83.30 |
barley | 30.96 | 47.29 | 72.74 | 35.03 |
maize | 78.30 | 87.83 | 84.77 | 91.11 |
other cereals | 8.15 | 15.08 | 18.59 | 12.69 |
rice | 0.00 | 0.00 | 0.00 | 0.00 |
flax/hemp/tobacco | 10.61 | 19.19 | 88.66 | 10.76 |
sunflower | 45.82 | 62.85 | 53.61 | 75.92 |
rapeseed | 71.89 | 83.64 | 82.53 | 84.78 |
other oilseed crops | 0.00 | 0.00 | 0.00 | 0.00 |
soy | 33.68 | 50.38 | 62.54 | 42.19 |
other protein crops | 8.93 | 16.39 | 18.95 | 14.44 |
fodder legumes | 27.19 | 42.76 | 44.10 | 41.50 |
beetroots | 75.31 | 85.91 | 84.14 | 87.77 |
potatoes | 14.37 | 25.13 | 19.45 | 35.48 |
other arable crops | 22.10 | 36.20 | 39.78 | 33.22 |
vineyard | 44.55 | 61.64 | 56.82 | 67.36 |
olive groves | 16.38 | 28.14 | 55.59 | 18.84 |
fruits orchards | 36.57 | 53.55 | 47.56 | 61.27 |
nut orchards | 6.60 | 12.38 | 19.69 | 9.03 |
other permanent crops | 12.12 | 21.62 | 84.16 | 12.40 |
mixed crops | 2.30 | 4.50 | 7.39 | 3.24 |
background | 88.73 | 94.03 | 92.86 | 95.22 |
Inference
Aerial ROI

Inference ROI

Cite
BibTeX:
@article{ign2025flairhub,
doi = {10.48550/arXiv.2506.07080},
url = {https://arxiv.org/abs/2506.07080},
author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
publisher = {arXiv},
year = {2025}
}
APA:
Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier.
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025).
DOI: https://doi.org/10.48550/arXiv.2506.07080