AGarioud's picture
Update README.md
bb96472 verified
metadata
license: etalab-2.0
pipeline_tag: image-segmentation
tags:
  - semantic segmentation
  - pytorch
  - landcover
model-index:
  - name: FLAIR-HUB_LC-I_swinbase-upernet
    results:
      - task:
          type: semantic-segmentation
        dataset:
          name: IGNF/FLAIR-HUB/
          type: earth-observation-dataset
        metrics:
          - type: mIoU
            value: 43.488
            name: mIoU
          - type: OA
            value: 64.126
            name: Overall Accuracy
          - type: IoU
            value: 57.225
            name: IoU building
          - type: IoU
            value: 49.833
            name: IoU greenhouse
          - type: IoU
            value: 61.59
            name: IoU swimming pool
          - type: IoU
            value: 53.178
            name: IoU impervious surface
          - type: IoU
            value: 39.981
            name: IoU pervious surface
          - type: IoU
            value: 43.96
            name: IoU bare soil
          - type: IoU
            value: 71.021
            name: IoU water
          - type: IoU
            value: 61.981
            name: IoU snow
          - type: IoU
            value: 36.862
            name: IoU herbaceous vegetation
          - type: IoU
            value: 48.208
            name: IoU agricultural land
          - type: IoU
            value: 4.559
            name: IoU plowed land
          - type: IoU
            value: 42.06
            name: IoU vineyard
          - type: IoU
            value: 58.671
            name: IoU deciduous
          - type: IoU
            value: 52.946
            name: IoU coniferous
          - type: IoU
            value: 18.069
            name: IoU brushwood
library_name: pytorch-lightning

🌐 FLAIR-HUB Model Collection

  • Trained on: FLAIR-HUB dataset 🔗
  • Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
  • Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
  • Decoders: UNet, UPerNet
  • Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
  • Class nomenclature: 15 classes for LC, 23 classes for LPIS
🆔
Model ID
🗺️
Land-cover
🌾
Crop-types
🛩️
Aerial
⛰️
Elevation
🛰️
SPOT
🛰️
S2 t.s.
🛰️
S1 t.s.
🛩️
Historical
LC-A
LC-D
LC-F
LC-G
LC-I
LC-L
LPIS-A
LPIS-F
LPIS-I
LPIS-J

🔍 Model: FLAIR-HUB_LC-I_swinbase-upernet

  • Encoder: swin_base_patch4_window12_384
  • Decoder: upernet
  • Metrics:
  • mIoU O.A. F-score Precision Recall
    43.49% 64.13% 58.09% 59.34% 58.11%
  • Params.: 89.2

General Informations


Training Config Hyperparameters

- Model architecture: swin_base_patch4_window12_384-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
    - default: 1.0
    - masked classes: [clear cut, ligneous, mixed, other]  weight = 0
- Input channels:
    - SPOT_RGBI : [4,1,2]
- Input normalization (custom):
    - SPOT_RGBI:
        mean: [1137.09, 433.26, 508.75]
        std:  [543.11, 312.76, 284.61]

Training Data

- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700
Classes distribution.

Training Logging

Training logging.

Metrics

Metric Value
mIoU 43.49%
Overall Accuracy 64.13%
F-score 58.09%
Precision 59.34%
Recall 58.11%
Class IoU (%) F-score (%) Precision (%) Recall (%)
building 57.23 72.79 72.23 73.37
greenhouse 49.83 66.52 64.05 69.18
swimming pool 13.76 24.20 39.65 17.41
impervious surface 53.18 69.43 68.13 70.78
pervious surface 39.98 57.12 56.88 57.37
bare soil 43.96 61.07 63.87 58.51
water 71.02 83.06 80.41 85.88
snow 61.98 76.53 69.44 85.23
herbaceous vegetation 36.86 53.87 56.88 51.16
agricultural land 48.21 65.05 57.30 75.23
plowed land 4.56 8.72 12.45 6.71
vineyard 42.06 59.21 69.71 51.47
deciduous 58.67 73.95 73.26 74.66
coniferous 52.95 69.23 71.47 67.14
brushwood 18.07 30.61 34.41 27.56

Inference

Aerial ROI

AERIAL

Inference ROI

INFERENCE

Cite

BibTeX:

@article{ign2025flairhub,
  doi = {10.48550/arXiv.2506.07080},
  url = {https://arxiv.org/abs/2506.07080},
  author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
  title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
  publisher = {arXiv},
  year = {2025}
}

APA:

Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier. 
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025). 
DOI: https://doi.org/10.48550/arXiv.2506.07080