--- license: etalab-2.0 pipeline_tag: image-segmentation tags: - semantic segmentation - pytorch - landcover model-index: - name: FLAIR-HUB_LC-I_swinbase-upernet results: - task: type: semantic-segmentation dataset: name: IGNF/FLAIR-HUB/ type: earth-observation-dataset metrics: - type: mIoU value: 43.488 name: mIoU - type: OA value: 64.126 name: Overall Accuracy - type: IoU value: 57.225 name: IoU building - type: IoU value: 49.833 name: IoU greenhouse - type: IoU value: 61.59 name: IoU swimming pool - type: IoU value: 53.178 name: IoU impervious surface - type: IoU value: 39.981 name: IoU pervious surface - type: IoU value: 43.96 name: IoU bare soil - type: IoU value: 71.021 name: IoU water - type: IoU value: 61.981 name: IoU snow - type: IoU value: 36.862 name: IoU herbaceous vegetation - type: IoU value: 48.208 name: IoU agricultural land - type: IoU value: 4.559 name: IoU plowed land - type: IoU value: 42.06 name: IoU vineyard - type: IoU value: 58.671 name: IoU deciduous - type: IoU value: 52.946 name: IoU coniferous - type: IoU value: 18.069 name: IoU brushwood library_name: pytorch-lightning ---

🌐 FLAIR-HUB Model Collection

πŸ†”
Model ID
πŸ—ΊοΈ
Land-cover
🌾
Crop-types
πŸ›©οΈ
Aerial
⛰️
Elevation
πŸ›°οΈ
SPOT
πŸ›°οΈ
S2 t.s.
πŸ›°οΈ
S1 t.s.
πŸ›©οΈ
Historical
LC-A βœ“ βœ“
LC-D βœ“ βœ“ βœ“
LC-F βœ“ βœ“ βœ“ βœ“
LC-G βœ“ βœ“
LC-I βœ“ βœ“
LC-L βœ“ βœ“ βœ“ βœ“ βœ“ βœ“
LPIS-A βœ“ βœ“
LPIS-F βœ“ βœ“
LPIS-I βœ“ βœ“ βœ“ βœ“
LPIS-J βœ“ βœ“ βœ“ βœ“ βœ“

πŸ” Model: FLAIR-HUB_LC-I_swinbase-upernet

--- ## General Informations - **Contact:** flair@ign.fr - **Code repository:** https://github.com/IGNF/FLAIR-HUB - **Paper:** https://arxiv.org/abs/2506.07080 - **Developed by:** IGN - **Compute infrastructure:** - software: python, pytorch-lightning - hardware: HPC/AI resources provided by GENCI-IDRIS - **License:** Etalab 2.0 --- ### Training Config Hyperparameters ```yaml - Model architecture: swin_base_patch4_window12_384-upernet - Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01) - Learning rate: 5e-5 - Scheduler: one_cycle_lr (warmup_fraction=0.2) - Epochs: 150 - Batch size: 5 - Seed: 2025 - Early stopping: patience 20, monitor val_miou (mode=max) - Class weights: - default: 1.0 - masked classes: [clear cut, ligneous, mixed, other] β†’ weight = 0 - Input channels: - SPOT_RGBI : [4,1,2] - Input normalization (custom): - SPOT_RGBI: mean: [1137.09, 433.26, 508.75] std: [543.11, 312.76, 284.61] ``` --- ### Training Data ```yaml - Train patches: 152225 - Validation patches: 38175 - Test patches: 50700 ```
Classes distribution.
--- ### Training Logging
Training logging.
--- ## Metrics | Metric | Value | | ---------------- | ------ | | mIoU | 43.49% | | Overall Accuracy | 64.13% | | F-score | 58.09% | | Precision | 59.34% | | Recall | 58.11% | | Class | IoU (%) | F-score (%) | Precision (%) | Recall (%) | | --------------------- | ------- | ----------- | ------------- | ---------- | | building | 57.23 | 72.79 | 72.23 | 73.37 | | greenhouse | 49.83 | 66.52 | 64.05 | 69.18 | | swimming pool | 13.76 | 24.20 | 39.65 | 17.41 | | impervious surface | 53.18 | 69.43 | 68.13 | 70.78 | | pervious surface | 39.98 | 57.12 | 56.88 | 57.37 | | bare soil | 43.96 | 61.07 | 63.87 | 58.51 | | water | 71.02 | 83.06 | 80.41 | 85.88 | | snow | 61.98 | 76.53 | 69.44 | 85.23 | | herbaceous vegetation | 36.86 | 53.87 | 56.88 | 51.16 | | agricultural land | 48.21 | 65.05 | 57.30 | 75.23 | | plowed land | 4.56 | 8.72 | 12.45 | 6.71 | | vineyard | 42.06 | 59.21 | 69.71 | 51.47 | | deciduous | 58.67 | 73.95 | 73.26 | 74.66 | | coniferous | 52.95 | 69.23 | 71.47 | 67.14 | | brushwood | 18.07 | 30.61 | 34.41 | 27.56 | --- ## Inference

Aerial ROI

AERIAL

Inference ROI

INFERENCE
--- ## Cite **BibTeX:** ``` @article{ign2025flairhub, doi = {10.48550/arXiv.2506.07080}, url = {https://arxiv.org/abs/2506.07080}, author = {Garioud, Anatol and Giordano, SΓ©bastien and David, Nicolas and Gonthier, Nicolas}, title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping}, publisher = {arXiv}, year = {2025} } ``` **APA:** ``` Anatol Garioud, SΓ©bastien Giordano, Nicolas David, Nicolas Gonthier. FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025). DOI: https://doi.org/10.48550/arXiv.2506.07080 ```